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CHAPTER 1
Introduction

Let K be a nonempty closed convex subset of a real normed linear space E.

A self-mapping T : K → K is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for

all x, y ∈ K. A self-mapping T : K → K is called asymptotically nonexpansive if

there exists a sequence {kn} ⊂ [1,∞), kn → 1 as n →∞ such that

‖T nx− T ny‖ ≤ kn‖x− y‖ (1.1)

for all x, y ∈ K and n ≥ 1.

A mapping T : K → K is said to be uniformly L-Lipschitzian if there exists

a constant L > 0 such that

‖T nx− T ny‖ ≤ L‖x− y‖ (1.2)

for all x, y ∈ K and n ≥ 1.

It is easy to see that if T is an asymptotically nonexpansive, then it is

uniformly L-Lipschitzian with the uniform Lipschitz constant L = sup{kn : n ≥ 1}.

Fixed-point iteration process for nonexpansive self-mappings including

Mann and Ishikawa iteration processes have been studied extensively by various

authors [1, 9, 11, 16, 17, 22]. For nonexpansive nonself-mappings, some authors [10,

14, 25, 27, 32] have studied the strong and weak convergence theorems in Hilbert

space or uniformly convex Banach space. In 2972, Goebel and Kirk [4] introduced

the class of asymptotically nonexpansive self-mappings, who proved that if K is

nonempty closed convex subset of real uniformly convex Banach space and T is an

asymptotically nonexpansive self-mapping on C, then T has a fixed point.

In 1991, Schu [23] introduced a modified Mann iteration process to approx-

imate fixed points of asymptotically nonexpansive self-mappings in Hilbret space.

More precisely, he proved the following theorem.
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Theorem 1.1 (see [23]). Let H be a Hilbert space, and let K be a nonempty

closed convex and bounded subset of H . Let T : K → K be an asymptotically

nonexpansive mapping with sequence {kn} ⊂ [1,∞) for all n ≥ 1, limn→∞kn = 1

and
∑∞

n=1(k
2
n − 1) < ∞. Let {αn} be a sequence in [0.1] satisfying the condition

0 < a ≤ αn ≤ b < 1, n ≥ 1, for some constant a, b. Then the sequence {xn}

generated from an arbitrary x1 ∈ K by the relation

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 1, (1.3)

converges strongly to some fixed point of T .

Since then, Schu’s iteration process has been widely used to approximate

fixed points of asymptotically nonexpansive self-mappings in Hilbert or Banach

spaces (see [16],[20],[21],[23],[28]).

The concept of asymptotically nonexpansive nonself-mappings was introduced

by Chidume, Ofoedu, and Zegeye [2] in 2003 as the generlization of asymptotically

nonexpansive self-mappings. The nonself of asymptotically nonexpansive nonself-

mapping is defined as follows.

Definition 1.2 (see [2]). Let K be a nonempty subset of a real normed linear space

E. Let P : E → K be a nonexpansive retraction of E onto K. A nonself-mapping

T : K → E is said to be asymptotically nonexpansive if there exists a sequence

{kn} ⊂ [1,∞) , kn → 1 as n →∞ such that

‖T (PT )n−1x− T (PT )n−1
1 y‖ ≤ kn‖x− y‖ (1.4)

for all x, y ∈ K and n ≥ 1. A non-self-mapping T is said to be uniformly

L− Lipschitzian if there exists a constant L ≥ 0 such that

‖T (PT )n−1x− T (PT )n−1
1 y‖ ≤ L‖x− y‖ (1.5)

for all x, y ∈ K and n ≥ 1.

We denote by (PT )0 the identity map from K onto itself. In [2], the authors

studied the following iterative sequence: x1 ∈ K,
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xn+1 = P ((1− αn)xn + αnT (PT )n−1xn), (1.6)

to approximate some fixed point of T under suitable conditions.

If T is a self-mapping, then P becomes the identity mapping so that (1.4)

and (1.5) reduce to (1.1) and (1.2), respectively, and (1.6) reduces to (1.3).

In 2006, Wang[31] generalized the iteration process (1.8) as follows: x1 ∈ K,

yn = P ((1− βn)xn + βnT2(PT2)
n−1xn),

xn+1 = P ((1−αn)xn +αnT1(PT1)
n−1yn), n ≥ 1, (1.7)

where T1, T2 : K → E are asymptotically nonexpansive nonself-mappings and {αn}

and {βn} are real sequences in [0,1). He proved strong and weak convergence of

the sequence {αn} defined by (1.7) to a common fixed point of T1 and T2 under

appropriate conditions. Meanwhile, the results of [31] generalized the results of [2].

In 2009, a new iterative scheme which is called the projection type Ishikawa

iteration for two asymptotically nonexpansive nonself-mappings was defined and con-

structed by Thianwan [30]. It is given as follows:

yn = P ((1− βn)xn + βnT2(PT2)
n−1xn),

xn+1 = P ((1−αn)yn +αnT1(PT1)
n−1yn), n ≥ 1, (1.8)

where {αn} and {βn} are appropriate real sequences in [0,1). He studied the scheme

for two asymptotically nonexpansive nonself-mappings and proved strong and weak

convergence of the sequences {xn} and {yn} to a common fixed point of T1, T2 under

suitable conditions in a uniformly convex Banach space.

Note that Thianwan process (1.8) and Wang process (1.7) are independent

neither reduces to the other.

If T1 = T2 and βn = 0 for all n ≥ 1, then (1.8) reduces to (1.6). It also can

be reduces to Schu process (1.3).
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Recently, Guo, Cho and Guo [7] studied the following iteration scheme:

x1 ∈ K,

yn = P ((1− βn)Sn
2 xn + βnT2(PT2)

n−1xn),

xn+1 = P ((1−αn)Sn
1 xn +αnT1(PT1)

n−1yn), n ≥ 1, (1.9)

where S1, S2 : K → K are asymptotically nonexpansive self-mappings, T1, T2 :

K → E are asymptotically nonexpansive nonself-mappings and {αn}, {βn} are two

sequences in [0,1). They studied the strong and weak convergence of the iterative

scheme (1.9) under proper conditions.

If S1 and S2 are the identity mappings, then the iterative scheme (1.9) re-

duces to the scheme (1.7).

Motivated by these recent works, we introduce and study a new iterative

scheme in this paper. The scheme is defind as follows.

Let E be a real Banach space, K be a nonempty closed convex subset of E

and P : E → K be a nonexpansive retraction of E onto K. Let S1, S2 : K → K be

two asymptotically nonexpansive self-mappings and T1, T2 : K → E be two asymp-

totically nonexpansive nonself-mappings. Then, we define the new iteration scheme

of mixed type as follows : x1 ∈ K,

yn = P ((1− βn)Sn
2 xn + βnT2(PT )n−1xn),

xn+1 = P ((1−αn)Sn
1 yn+αnT1(PT )n−1yn), n ≥ 1, (1.10)

where {αn}, {βn} are two sequences [0,1).

The iterative scheme (1.10) is called the projective type iterative process for

mixed type of asymptotically nonexpansive mappings. If S1 and S2 are the identity

mappings, then the iterative scheme (1.10) reduces to (1.8).

Note that (1.9) and (1.10) are independent neither reduces to the other.

The purpose of this paper is to construct an iteration scheme for approxi-

mating common fixed points of two asymptotically nonexpansive self-mappings and

two asymptotically nonexpansive nonself-mappings and to prove some strong and weak

convergence theorems for such mappings in a real uniformly convex Banach space.



CHAPTER 2
Preliminaries

We denote the set of common fixed points of S1, S2, T1 and T2 by F =

F (S1)∩ F (S2)∩ F (T1)∩ F (T2) and denote the distance between a point z and a set

A in E by d(z, A) = infx∈A ‖z − x‖.

Now, we recall some well-known concepts and results.

Let E be a real Banach space, E∗ be the dual space of E and J : E → 2E∗

be the normalized duality mapping defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = ‖x‖}

for all x ∈ E, where 〈·, ·〉 denotes duality pairing between E and E∗. A single-

valued normalized duality mapping is denoted by j.

A subset K of a real Banach space E is called a retract of E [2] if there

exists a continuous mapping P : E → K such that Px = x for all x ∈ K. Every

closed convex subset of a uniformly convex Banach space is a retract. A mapping

P : E → E is called a retraction if P 2 = P . It follows that if a mapping P is a

retraction, than Py = y for all y in the range of P .

Recall that a Banach space E is said to satisfy Opial′s condition [15] if

xn → x weakly as n →∞ and x 6= y implying that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖.

A mapping T : K → E is said to be semi-compact if, for any sequence

{xn} in K such that ‖xn − Txn‖ → 0 as n →∞, there exists a subsequence {xnj
}

of {xn} such that {xnj
} converges strongly to x∗ ∈ K.

A Banach space E is said to have a Fréchet differentiable norm [17] if, for

all x ∈ U = {x ∈ E : ‖x‖ = 1},

lim
t→0

‖x + ty‖ − ‖x‖
t

exists and is attained uniformly in y ∈ U .
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A Banach space E is said to have the Kadec-Klee property [5] if for every

sequence {xn} in E, xn → x weakly and ‖xn‖ → ‖x‖, if follows that xn → x strongly.

In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.1 [26] Let {an}, {bn} and {cn} be three nonnegative sequences sat-

isfying the following condition:

an+1 ≤ (1 + bn)an + cn

for each n ≥ n0, where n0 is some nonnegative integer,
∑∞

n=n0
bn < ∞ and∑∞

n=n0
cn < ∞. Then limn→∞an exists.

Lemma 2.2 [23] Let E be a real uniformly convex Banach space and 0 < p ≤

tn < q < 1 for each n ≥ 1. Also, suppose that {xn} and {yn} are two sequences

of such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r, lim
n→∞

‖tnxn + (1− tn)yn‖ = r

hold for some r ≥ 0. Then limn→∞‖xn − yn‖ = 0.

Lemma 2.3 [2] Let E be a real uniformly convex Banach space, K be a nonempty

closed convex subset of E and T : K → E be an asymptotically nonexpansive

mapping with a sequence {kn} ⊂ [1,∞) and kn → 1 as n → ∞. Then I − T

is demiclosed at zero, i.e., if xn → x weakly and xn − Txn → 0 strongly, then

x ∈ F (T ), where F (T ) is the set of fixed points of T.

Lemma 2.4 [3] Let E be a uniformly convex Banach space and K be a con-

vex subset of E. Then there exists a strictly increasing continuous convex function

γ : [0,∞) → [0,∞) with γ(0) = 0 such that, for each mapping S : K → K with a

Lipschitz constant L > 0,
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‖αn + (1− α)Sy − S(αx + (1− α)y)‖ ≤ Lγ1(‖x− y‖ − 1
L
‖Sx− Sy‖)

for all x, y ∈ K and 0 < α < 1.

Lemma 2.5 [3] Let E be a uniformly convex Banach space such that its dual

space E∗ has the Kadec-Klee property. Suppose {xn} is a bounded sequence and

f1, f2 ∈ Ww({xn}) such that

lim
n→∞

‖αxn + (1− α)f1 − f2‖

exists for all α ∈ [0, 1], where Ww({xn}) denotes the set of all weak subsequen-

tial limits of {xn}. Then f1 = f2.



CHAPTER 3
Main Results

In this chapter, we prove theorems of strong and weak convergence of the

iterative scheme given in (1.10) to a common fixed point of mixed type of two asymp-

totically nonexpansive self-mappings and two asymptotically nonexpansive nonself-

mappings in uniformly convex Banach spaces.

In order to prove our main results, the following lemmas are needed.

Lemma 3.1 Let E be a real uniformly convex Banach space and K a nonempty closed

convex nonexpansive retract of E with P as a nonexpansive retraction. Let S1, S2

: K −→ K be two asymptotically nonexpansive self-mappings with{k(1)
n }, {k(2)

n } ⊂

[1,∞) and T1, T2 : K → E be two asymptotically nonexpansive nonself-mappings

with {l(1)
n }, {l(2)

n } ⊂ [1,∞) such that
∑∞

n=1(k
(i)
n − 1) < ∞ and

∑∞
n=1(l

(i)
n − 1) < ∞

for i = 1, 2, respectively and F = F (S1)∩F (S2)∩F (T1)∩F (T2) 6= ∅. Suppose that

{αn} and {βn} are real sequences in [0, 1). From an arbitrary x1 ∈ K, define the

sequence {xn} using (1.10) Then

(1) lim
n→∞

‖xn − q‖ exists for any q ∈ F ;

(2) lim
n→∞

d(xn, F ) exists.

Proof Let q ∈ F . Setting hn = max{k(1)
n , k

(2)
n , l

(1)
n , l

(2)
n }. Using (1.10), we

have

‖yn − q‖ = ‖P ((1− βn)Sn
2 xn + βnT2(PT2)

n−1xn)− q‖

= ‖P ((1− βn)Sn
2 xn + βnT2(PT2)

n−1xn)− P (q)‖

≤ ‖(1− βn)(Sn
2 xn − q) + βn(T2(PT2)

n−1xn − q)‖

≤ (1− βn)hn‖xn − q‖+ βnhn‖xn − q‖

= hn‖xn − q‖, (3.1)



9

and so

‖xn+1 − q‖ = ‖P ((1− αn)Sn
1 yn + αnT1(PT1)

n−1yn)− q‖

= ‖P ((1− αn)Sn
1 yn + αnT1(PT1)

n−1yn)− P (q)‖

≤ ‖(1− αn)(Sn
1 yn − q) + αn(T1(PT1)

n−1yn − q)‖

≤ (1− αn)hn‖yn − q‖+ αnhn‖yn − q‖

= hn‖yn − q‖

≤ h2
n‖xn − q‖

= (1 + (h2
n − 1))‖xn − q‖. (3.2)

Since
∑∞

n=1(k
(i)
n − 1) < ∞ and

∑∞
n=1(l

(i)
n − 1) < ∞ for i = 1, 2, we have∑∞

n=1(h
2
n − 1) < ∞. It follows from Lemma 2.1 that lim

n→∞
‖xn − q‖ exists.

(2) Taking the infimum over all q ∈ F in (3.2), we have

d(xn+1, F ) ≤ (1 + (h2
n − 1))d(xn, F )

for each n ≥ 1. It follows from
∑∞

n=1(h
2
n − 1) < ∞ and Lemma 2.1 that the

conclusion (2) holds. This completes the proof.

Lemma 3.2 Let E be a real uniformly convex Banach space and K a nonempty

closed convex nonexpansive retract of E with P as a nonexpansive retraction. Let

S1, S2 : K → K be two asymptotically nonexpansive self-mappings with {k(1)
n }, {k(2)

n } ⊂

[1,∞) and T1, T2 : K → E be two asymptotically nonexpansive nonself-mappings

with {l(1)
n }, {l(2)

n } ⊂ [1,∞) such that
∑∞

n=1(k
(i)
n − 1) < ∞ and

∑∞
n=1(l

(i)
n − 1) < ∞

for i = 1, 2, respectively and F = F (S1)∩F (S2)∩F (T1)∩F (T2) 6= ∅. Suppose that

{αn} and {βn} are real sequences in [ε, 1− ε] for some ε ∈ (0, 1). From an arbitrary

x1 ∈ K, define the sequence {xn} using (1.10). If ‖x − Tiy‖ ≤ ‖Six − Tiy‖ for all

x, y ∈ K and i = 1, 2, then lim
n→∞

‖xn − Sixn‖ = lim
n→∞

‖xn − Tixn‖ = 0 for i = 1, 2.
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Proof Suppose that ‖x−Tiy‖ ≤ ‖Six−Tiy‖ for all x, y ∈ K and i = 1, 2. Let q ∈ F .

Set hn = max{k(1)
n , k

(2)
n , l

(1)
n , l

(2)
n }. By Lemma 3.1, we are that limn→∞‖xn−q‖ exist-

s. Assume that lim
n→∞

‖xn−q‖ = c. Since
∑∞

n=1(h
2
n−1) < ∞ and lim

n→∞
‖xn+1−q‖ = c,

letting n →∞ in the inequality (3.2), we have

lim
n→∞

‖(1− αn)(Sn
1 yn − q) + αnT1(PT1)

n−1yn − q)‖ = c. (3.3)

In addition, ‖Sn
1 yn − q‖ ≤ k

(1)
n ‖yn − q‖, taking the lim sup on both sides in this

inequality, we have

lim sup
n→∞

‖Sn
1 yn − q‖ ≤ c. (3.4)

Taking the lim sup on both sides in the inequality (3.1), we obtain lim sup
n→∞

‖yn−q‖ ≤

c, and so

lim sup
n→∞

‖T1(PT1)
n−1yn − q‖ ≤ lim sup

n→∞
l(1)n ‖yn − q‖ ≤ c. (3.5)

By using (3.3), (3.4), (3.5) and Lemma 2.2, we have

lim
n→∞

‖Sn
1 yn − T1(PT1)

n−1yn‖ = 0. (3.6)

Since

‖yn−T1(PT1)
n−1yn‖ ≤ ‖Sn

1 yn−T1(PT1)
n−1yn‖. (3.7)

Letting n →∞ in the inequality (3.7), by (3.6), we have

lim
n→∞

‖yn − T1(PT1)
n−1yn‖ = 0. (3.8)
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From (3.2), we have

‖xn+1 − q‖ ≤ hn‖yn − q‖ ≤ h2
n‖yn − q‖. (3.9)

Taking the lim inf on both sidies in the inequality (3.9), we have

lim inf
n→∞

‖yn − q‖ ≥ c. (3.10)

Since lim sup
n→∞

‖yn − q‖ ≤ c, by (3.10), we have lim
n→∞

‖yn − q‖ = c. This implies

that

c = lim ‖yn − q‖ ≤ lim
n→∞

‖(1− βn)(Sn
2 xn − q) + βn(T2(PT2)

n−1xn − q)‖

≤ lim
n→∞

‖xn − q‖ = c,

and so

lim
n→∞

‖(1− βn)(Sn
2 xn − q) + βn(T2(PT2)

n−1xn − q)‖ = c. (3.11)

In addition, we have

lim sup
n→∞

‖Sn
2 xn − q‖ ≤ lim sup

n→∞
k(2)

n ‖xn − q‖ = c (3.12)

and

lim sup
n→∞

‖T2(PT2)
n−1xn−q‖ ≤ lim sup

n→∞
l(2)
n ‖xn−q‖ = c. (3.13)

It follows from (3.11), (3.12), (3.13) and Lemma 2.2 that

lim
n→∞

‖Sn
2 xn − T2(PT2)

n−1xn‖ = 0. (3.14)



12

Now, we prove that

lim
n→∞

‖xn − T1xn‖ = lim
n→∞

‖xn − T2xn‖ = 0.

Indeed, since ‖xn − T2(PT2)
n−1xn‖ ≤ ‖Sn

2 xn − T2(PT2)
n−1xn‖. (3.15)

Using (3.14) and (3.15), we have

lim
n→∞

‖xn − T2(PT2)
n−1xn‖ = 0. (3.16)

Since Sn
2 xn = P (Sn

2 xn) and P : E → K is nonexpansive rectraction of E onto K,

we have

‖yn − Sn
2 xn‖ ≤ ‖(1− βn)(Sn

2 xn − Sn
2 xn) + βn(T2(PT2)

n−1xn − Sn
2 xn)‖

≤ βn‖T2(PT2)
n−1xn − Sn

2 xn‖.

Using (3.14), we have

lim
n→∞

‖yn − Sn
2 xn‖ = 0. (3.17)

Furthermore, we have

‖yn − xn‖ ≤ ‖yn − Sn
2 xn‖+ ‖Sn

2 xn − T2(PT2)
n−1xn‖

+‖T2(PT2)
n−1xn−xn‖. (3.18)

It follows from (3.14), (3.16), (3.17) and (3.18) that

lim
n→∞

‖xn − yn‖ = 0. (3.19)
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Since

‖xn − T1(PT1)
n−1xn‖ ≤ ‖Sn

1 xn − T1(PT1)
n−1xn‖

and

‖Sn
1 xn − T1(PT1)

n−1xn‖ ≤ ‖Sn
1 xn − Sn

1 yn‖+ ‖Sn
1 yn − T1(PT1)

n−1yn‖

+‖T1(PT1)
n−1yn − T1(PT1)

n−1xn‖

= k
(1)
n ‖xn − yn‖+ ‖Sn

1 yn + T1(PT1)
n−1yn‖

+l
(1)
n ‖yn−xn‖. (3.20)

Using (3.6), (3.19) and (3.20), we have

lim
n→∞

‖Sn
1 xn − T1(PT1)

n−1xn‖ = 0, (3.21)

and so

lim
n→∞

‖xn − T1(PT1)
n−1xn‖ = 0. (3.22)

In addition,

‖xn+1 − Sn
1 yn‖ = ‖P ((1− αn)Sn

1 yn + αnT1(PT1)
n−1yn)− P (Sn

1 yn)‖

≤ (1− αn)‖Sn
1 yn − Sn

1 yn‖+ αn‖T1(PT1)
n−1yn − Sn

1 yn‖.

Thus, it follows from (3.6) that

lim
n→∞

‖xn+1 − Sn
1 yn‖ = 0. (3.23)

In addition,

‖xn+1 − T1(PT1)
n−1yn‖ ≤ ‖xn+1 − Sn

1 yn‖+ ‖Sn
1 yn − T1(PT1)

n−1yn‖.
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By using (3.6) and (3.23), we have

lim
n→∞

‖xn+1 − T1(PT1)
n−1yn‖ = 0. (3.24)

It follows from (3.21) and (3.22) that

‖Sn
1 xn − xn‖ = ‖Sn

1 xn − T1(PT1)
n−1xn + T1(PT1)

n−1xn − xn‖

≤ ‖Sn
1 xn − T1(PT1)

n−1xn‖+ ‖T1(PT1)
n−1xn − xn‖ (3.25)

→ 0 (as n →∞).

In addition,

‖Sn
1 xn − T2(PT2)

n−1xn‖ = ‖Sn
1 xn − xn + xn − T2(PT2)

n−1xn‖

≤ ‖Sn
1 xn − xn‖+ ‖xn − T2(PT2)

n−1xn‖.

Thus, it follows from (3.16) and (3.25) that

lim
n→∞

‖Sn
1 xn − T2(PT2)

n−1xn‖ = 0. (3.26)

In addition,

‖Sn
1 yn − T2(PT2)

n−1xn‖ = ‖Sn
1 yn − Sn

1 xn + Sn
1 xn − T2(PT2)

n−1xn‖

≤ ‖Sn
1 yn − Sn

1 xn‖+ ‖Sn
1 xn − T2(PT2)

n−1xn‖

≤ k(1)
n ‖yn − xn‖+ ‖Sn

1 xn − T2(PT2)
n−1xn‖.

By using (3.19) and (3.26), we have

lim
n→∞

‖Sn
1 yn − T2(PT2)

n−1xn‖ = 0. (3.27)
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It follows from (3.23) and (3.27) that

‖xn+1 − T2(PT2)
n−1yn‖ = ‖xn+1 − Sn

1 yn + Sn
1 yn − T2(PT2)

n−1xn‖

= ‖xn+1 − Sn
1 yn‖+ ‖Sn

1 yn − T2(PT2)
n−1xn‖

→ 0 (as n →∞). (3.28)

Again, since (PTi)(PTi)
n−2yn−1, xn ∈ K for i = 1, 2 and T1, T2 are two asymp-

totically nonexpansive nonself-mappings, we have

‖Ti(PTi)
n−1yn−1 − Tixn‖ = ‖Ti((PTi)(PTi)

n−2yn−1)− Ti(Pxn)‖

≤ max{l(1)1 , l
(2)
1 }‖(PTi)(PTi)

n−2yn−1 − Pxn‖

≤ max{l(1)1 , l
(2)
1 }‖Ti(PTi)

n−2yn−1 − xn‖. (3.29)

Using (3.24) , (3.28) and (3.29), for i = 1, 2, we have

lim
n→∞

‖Ti(PTi)
n−1yn−1 − Tixn‖ = 0. (3.30)

Moreover, we have

‖xn+1 − yn‖ ≤ ‖xn+1 − T1(PT1)
n−1yn‖+ ‖T1(PT1)

n−1yn − yn‖.

Using (3.8) and (3.24), we have

lim
n→∞

‖xn+1 − yn‖ = 0. (3.31)

In addition, for i = 1, 2, we have

‖xn − Tixn‖ ≤ ‖xn − Ti(PTi)
n−1xn‖+ ‖Ti(PTi)

n−1xn − Ti(PTi)
n−1yn−1‖

+‖Ti(PTi)
n−1yn−1 − Tixn‖
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≤ ‖xn − Ti(PTi)
n−1xn‖+ max{sup

n≥1
l(1)n , sup

n≥1
l2n}‖xn − yn−1‖

+‖Ti(PTi)
n−1yn−1 − Tixn‖.

Thus, it follows from (3.16), (3.22), (3.30) and (3.31) that

lim
n→∞

‖xn − T1xn‖ = lim
n→∞

‖xn − T2xn‖ = 0.

Finally, we prove that

lim
n→∞

‖xn − S1xn‖ = lim
n→∞

‖xn − S2xn‖ = 0.

In fact, for i = 1, 2, we have

‖xn − Sixn‖ ≤ ‖xn − Ti(PTi)
n−1xn‖+ ‖Sixn − Ti(PTi)

n−1xn‖

≤ ‖xn − Ti(PTi)
n−1xn‖+ ‖Sn

1 xn − Ti(PTi)
n−1xn‖.

Thus, it follows from (3.16), (3.21), (3.22) and (3.26) that

lim
n→∞

‖xn − S1xn‖ = lim
n→∞

‖xn − S2xn‖ = 0.

The proof is completed.

Now, we find two mapping, S1 = S2 = S and T1 = T2 = T , satisfying

the condition ‖x− Tiy‖ ≤ ‖Sixn − Tiy‖ for all x, y ∈ K and i = 1, 2 in Lemma 3.2

as follows.

Example 3.1[13] Let R be the real line with the usual norm | · | and let K = [−1, 1].

Define two mappings S, T : K → K by

Tx =

 −2 sin x
2
, if x ∈ [0, 1],

2 sin x
2
, if x ∈ [−1, 0)
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and

Sx =

 x, if x ∈ [0, 1]

−x, if x ∈ [−1, 0).

Now, we show that T is nonexpansive. In fact, if x, y ∈ [0, 1] or x, y ∈ [−1, 0), than

we have

|Tx− Ty| = 2| sin x
2
− sin y

2
| ≤ |x− y|.

If x ∈ [0, 1] and y ∈ [−1, 0) or x ∈ [−1, 0) and y ∈ [0, 1], then we have

|Tx− Ty| = 2| sin x

2
− sin

y

2
|

= 4| sin x + y

4
cos

x− y

4
|

≤ |x + y|

≤ |x− y|.

This implies that T is nonexpansive, and so T is an asymptotically nonexpansive map-

ping with kn = 1 for each n ≥ 1. Similarly, we can show that S is an asymptotically

nonexpansive mapping with ln = 1 for each n ≥ 1.

Next, we consider the following cases:

Case 1. Let x, y ∈ [0, 1]. Then we have

|x− Ty| = |x + 2 sin y
2
| = |Sx− Ty|.

Case 2. Let x, y ∈ [−1, 0). Then we have

|x− Ty| = |x− 2 sin y
2
| ≤ | − x− 2 sin y

2
| = |Sx− Ty|.

Case 3. Let x ∈ [−1, 0) and y ∈ [0, 1]. Then we have

|x− Ty| = |x + 2 sin y
2
| ≤ | − x + 2 sin y

2
| = |Sx− Ty|.

Case 4. Let x ∈ [0, 1] and y ∈ [−1, 0]. Then we have

|x− Ty| = |x− 2 sin y
2
| = |Sx− Ty|.

Theorem 3.1 Under the assumptions of Lemma 3.2, if one of S1, S2, T1 and T2 is

completely continuous, then the sequence {xn} defined by (1.10) converges strongly

to a common fixed point of S1, S2, T1 and T2.
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Proof Without loss of generality, we can assume that S1 is completely continuous.

Since {xn} is bounded by Lemma 3.1, there exists a subsequence {S1xnj
} of {S1xn}

such that {S1xnj
} converges strongly to some q∗. Moreover, we know that

lim
j→∞

‖xnj
− S1xnj

‖ = lim
j→∞

‖xnj
− S2xnj

‖ = 0

and

lim
j→∞

‖xnj
− T1xnj

‖ = lim
j→∞

‖xnj
− T2xnj

‖ = 0

by Lemma 3.2, which imply that

‖xnj
− q∗‖ ≤ ‖xnj

− S1xnj
‖+ ‖S1xnj

− q∗‖ → 0

as j → ∞, and so xnj
→ q∗ ∈ K. Thus, by the continuity of S1, S2, T1 and

T2, we have

‖q∗ − Siq
∗‖ = lim

j→∞
‖xnj

− Sixnj
‖ = 0

and

‖q∗ − Tiq
∗‖ = lim

j→∞
‖xnj

− Tixnj
‖ = 0

for i = 1, 2. Thus it follows that q∗ ∈ F (S1) ∩ F (S2) ∩ F (T1) ∩ F (T2). Fur-

thermore, since lim
n→∞

‖xn − q∗‖ exists by Lemma 3.1, we have lim
n→∞

‖xn − q∗‖ = 0.

This completes the proof.

Theorem 3.2 Under the assumptions of Lemma 3.2, if one of S1, S2, T1 and T2

is semi-compact, then the sequence {xn} defined by (1.10) converges strongly to a

common fixed point of S1, S2, T1 and T2.

Proof Since lim
n→∞

‖xn − Sixn‖ = lim
n→∞

‖xn − Tixn‖ = 0 for i = 1, 2 by Lemma

3.2 and one of S1, S2, T1 and T2 is semi-compact, there exists a subsequence {xnj
}

of {xn} such that {xnj
} converges strongly to some q∗ ∈ K. Moreover,
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by the continuity of S1, S2, T1 and T2, we have ‖q∗−Siq
∗‖ = lim

j→∞
‖xnj

−Sixnj
‖ = 0

and ‖q∗ − Tiq
∗‖ = lim

j→∞
‖xnj

− Tixnj
‖ = 0 for i = 1, 2. Thus it follows that

q∗ ∈ F (S1)∩F (S2)∩F (T1)∩F (T2). Since lim
n→∞

‖xn− q∗‖ exists by Lemma 3.1, we

have lim
n→∞

‖xn − q∗‖ = 0. This completes the proof.

Theorem 3.3 Under the assumptions of Lemma 3.2, if there exists a nondecreas-

ing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such

that

f(d(x, F )) ≤ ‖x− S1x‖+ ‖x− S2x‖+ ‖x− T1x‖+ ‖x− T2x‖

for all x ∈ K, where F = F (S1) ∩ F (S2) ∩ F (T1) ∩ F (T2), then the sequence

{xn} defined by (1.10) converges strongly to a common fixed point of S1, S2, T1 and

T2.

Proof Since lim
n→∞

‖xn − Sixn‖ = lim
n→∞

‖xn − Tixn‖ = 0 for i = 1, 2 by Lemma

3.2, we have lim
n→∞

f(d(xn, F )) = 0. Since f : [0,∞) → [0,∞) is a nondecreasing

function satisfying f(0) = 0, f(r) > 0 for all r ∈ (0,∞) and lim
n→∞

d(xn, F ) exists by

Lemma 3.1, we have lim
n→∞

d(xn, F ) = 0.

Now, we show that {xn} is a Cauchy sequence in K. In fact, from (3.2), we

have

‖xn+1 − q‖ ≤ (1 + (h2
n − 1))‖xn − q‖

for each n ≥ 1, where hn = max{k(1)
n , k

(2)
n , l

(1)
n , l

(2)
n } and q ∈ F . For any
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m, n,m > n ≥ 1, we have

‖xm − q‖ ≤ (1 + (h2
m−1 − 1))‖xm−1 − q‖

≤ e
h2

m−1−1‖xm−1 − q‖

≤ e
h2

m−1−1e
h2

m−2−1‖xm−2 − q‖
...

≤ e
Pm−1

i=n (h2
i−1)‖xn − q‖

≤ M‖xn − q‖,

where M = eΣ∞i=1(h2
i−1). Thus, for any q ∈ F , we have

‖xn − xm‖ ≤ ‖xn − q‖+ ‖xm − q‖

≤ (1 + M)‖xn − q‖.

Taking the infimum over all q ∈ F , we obtain

‖xn − xm‖ ≤ (1 + M)d(xn, F ).

Thus it follows from lim
n→∞

d(xn, F ) = 0 that {xn} is a Cauchy sequence. Since

K is a closed subset of E, the sequence {xn} converges strongly to some q∗ ∈ K.

It is easy to prove that F (S1), F (S2), F (T1) and F (T2) are all closed and so F is a

closed subset of K. Since lim
n→∞

d(xn, F ) = 0, q∗ ∈ F , the sequence {xn} converges

strongly to a common fixed point of S1, S2, T1 and T2. This completes the proof.

In the remainder of the section, we deal with the weak convergence of the

iterative scheme (1.10) to a common fixed point of mixed type of two asymptotically

nonexpansive self-mappings and two asymptotically nonexpansive nonself-mappings

in uniformly convex Banach spaces.
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Lemma 3.3 Under the assumptions of Lemma 3.1, for all q1, q2 ∈ F = F (S1) ∩

F (S2) ∩ F (T1) ∩ F (T2), the limit

lim
n→∞

‖txn + (1− t)q1 − q2‖

exists for all t ∈ [0, 1], where {xn} is the sequence defined by (1.10).

Proof Set an(t) = lim
n→∞

‖txn +(1− t)q1− q2‖. Then lim
n→∞

an(0) = ‖q1− q2‖ and, from

Lemma 3.1, lim
n→∞

an(1) = lim
n→∞

‖xn− q2‖ exists. Thus it remains to prove Lemma 3.3

for any t ∈ (0, 1).

Define the mapping Gn : K → K by

Gnx = P ((1− αn)Sn
1 P ((1− βn)Sn

2 x + βnT2(PT2)
n−1x) +

αnT1(PT1)
n−1P ((1− βn)Sn

2 x + βnT2(PT2)
n−1x))

for all x ∈ K. It follows that

‖Gnx−Gny‖ = ‖P ((1− αn)Sn
1 P ((1− βn)Sn

2 x + βnT2(PT2)
n−1x) +

αnT1(PT1)
n−1P ((1− βn)Sn

2 x + βnT2(PT2)
n−1x))−

‖P ((1− αn)Sn
1 P ((1− βn)Sn

2 y + βnT2(PT2)
n−1y) +

αnT1(PT1)
n−1P ((1− βn)Sn

2 y + βnT2(PT2)
n−1y))‖

≤ ‖((1− αn)Sn
1 P ((1− βn)Sn

2 x + βnT2(PT2)
n−1x) +

αnT1(PT1)
n−1P ((1− βn)Sn

2 x + βnT2(PT2)
n−1x))−

‖((1− αn)Sn
1 P ((1− βn)Sn

2 y + βnT2(PT2)
n−1y) +

αnT1(PT1)
n−1P ((1− βn)Sn

2 y + βnT2(PT2)
n−1y))‖

= (1− αn)‖(Sn
1 ((1− βn)Sn

2 x + βnT2(PT2)
n−1x)−

(Sn
1 ((1− βn)Sn

2 y + βnT2(PT2)
n−1y) +

αn(T1(PT1)
n−1P ((1− βn)Sn

2 x + βnT2(PT2)
n−1x))−

(T1(PT1)
n−1P ((1− βn)Sn

2 y + βnT2(PT2)
n−1y))‖
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≤ (1− αn)hn‖((1− βn)(Sn
2 x− Sn

2 y) + βnT2(PT2)
n−1(x− y)‖+

αnhn‖(1− βn)(Sn
2 x− Sn

2 y) + βnT2(PT2)
n−1(x− y)‖

≤ (1− αn)hn‖(1− βn)(Sn
2 x− Sn

2 y)‖

+(1− αn)hn‖βnT2(PT2)
n−1(x− y)‖

+αnhn‖(1− βn)(Sn
2 x− Sn

2 y)‖+ αnhn‖βnT2(PT2)
n−1(x− y)‖

= (h2
n + h2

nβn − αnh
2
n + h2

nαnβn)‖x− y‖+ h2
nβn‖x− y‖

αnhnβn‖x− y‖+ αnh
2
n(1− βn)‖x− y‖+ αnβnh

2
n‖x− y‖

= (h2
n + h2

nβn − αnh
2
n + h2

nαnβn)‖x− y‖+ h2
nβn‖x− y‖

αnh
2
nβn‖x− y‖+ +αnβnh

2
n‖x− y‖

= h2
n‖x− y‖ (3.32)

for all x, y ∈ K, where hn = max{k(1)
n , k

(2)
n , l

(1)
n , l

(2)
n }. Letting hn = 1+ vn, it follows

from 1 ≤
∏∞

j=n h2
j ≤ e2

P∞
j=n vj and

∑∞
n=1 vn < ∞ that lim

n→∞

∏∞
j=n h2

j = 1. Setting

Sn,m = Gn+m−1Gn+m−2...Gn (3.33)

for each m ≥ 1, from (3.32) and (3.33), it follows that

‖Sn,mx− Sn,my‖ (
n+m−1∏

j=n

h2
j)‖x− y‖

for all x, y ∈ K and Sn,mxn = xn+m, Sn,mq = q for any q ∈ F . Let

bn,m = ‖tSn,mxn + (1− t)Sn,mq1 − Sm,n(txn + (1− t)q1)‖. (3.34)

Then, using (3.34) and Lemma 2.4, we have

bn,m ≤ (
n+m−1∏

j=n

h2
j)γ

−1(‖xn − q1‖ − (
n+m−1∏

j=n

h2
j)
−1‖Sn,mxn − Sn,mq1‖)

≤ (
∞∏

j=n

h2
j)γ

−1(‖xn − q1‖ − (
∞∏

j=n

h2
j)
−1‖xn,m − q1‖).
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It follows from Lemma 3.1 and lim
n→∞

∞∏
j=n

h2
j = 1 that lim

n→∞
bn,m = 0

uniformly for all m. Observe that

an,m(t) ≤ ‖Sn,m(txn + (1− t)q1)− q2‖+ bn,m

= ‖Sn,m(txn + (1− t)q1)− Sn,mq2‖+ bn,m

≤ (
n+m−1∏

j=n

h2
j)‖txn + (1− t)q1 − q2‖+ bn,m

≤ (
∞∏

j=n

h2
j)an(t) + bn,m.

Thus we have lim sup
n→∞

an(t) ≤ lim inf
n→∞

an(t), That is, lim
n→∞

‖txn +(1− t)q1− q2‖ exists

for all t ∈ (0, 1). This completes the proof.

Lemma 3.4 Under the assumptions of Lemma 3.1, if E has a Fréchet dif-

ferentiable norm, then, for all q1, q2 ∈ F = F (S1) ∩ F (S2) ∩ F (T1) ∩ F (T2), the

limit

lim
n→∞

〈xn, j(q1 − q2)〉

exists, where {xn} is the sequence defined by (1.10). Furthermore, if Ww({xn})

denotes the set of all weak subsequential limits of {xn}, then 〈x∗−y∗, j(q1−q2)〉 = 0

for all q1, q2 ∈ F and x∗, y∗ ∈ Ww({xn}).

Proof This follows basically as in the proof of Lemma 3.2 of [8] using Lemma 3.3

instead of Lemma 3.1 of [8].

Theorem 3.4 Under the assumptions of Lemma 3.2, if E has Fréchet differentiable

norm, then the sequence {xn} defined by (1.10) converges weakly to a common fixed

point of S1, S2, T1 and T2.

Proof Since E is a uniformly convex Banach space the sequence {xn} is bound-

ed by Lemma 3.1, there exists a subsequence {xnk
} of {xn} which converges weakly

to some q ∈ K. By Lemma 3.2, we have
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lim
k→∞

‖xnk
− Sixnk

‖ = lim
k→∞

‖xnk
− Tixnk

‖ = 0

for i = 1.2. It follows Lemma 2.3 that q ∈ F = F (S1) ∩ F (S2) ∩ F (T1) ∩ F (T2).

Now, we prove that the sequence {xn} converges weakly to q. Suppose that there

exists a subsequence {xmj
} of {xn} such that {xmj

} converges weakly to some

q1 ∈ K. Then, by the same method given we can also prove that q1 ∈ F . So,

q1, q2 ∈ F ∩Ww({xn}). It follows from Lemma 3.4 that

‖q − q1‖2 = 〈q − q1, j(q − q1)〉 = 0.

Therefore, q1 = q, which shows that the sequence {xn} converges weakly to q.

This completes the proof.

Theorem 3.5 Under the assumptions of Lemma 3.2, if the dual space E? of E

has the Kadce-Klee property, then sequence {xn} defined by (1.10) converges weakly

to a common fixed point of S1, S2, T1 and T2.

Proof Using the same method given in Theorem 3.4, we can prove that there ex-

ists a subsequence {xnk
} of {xn} which converges weakly to some q ∈ F =

F (S1) ∩ F (S2) ∩ F (T1) ∩ F (S2). Now, we prove that the sequence {xn} converges

weakly to q. Suppose that there exists a subsequence {xmj
} of {xn} such that {xmj

}

converges weakly to some q∗ ∈ K. Then, as for q, we have q∗ ∈ F . It follows from

Lemma 3.3 that the limit

lim
n→∞

‖txn − (1− t)q − q∗‖

exists for all t ∈ [0, 1]. Again, since q, q∗ ∈ Ww({xn}), q∗ = q be Lemma 2.5.

This shows that the sequence {xn} converges weakly to q. This completes the proof.
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Theorem 3.6 Under the assumptions of Lemma 3.2, if E satisfies Opial’s condi-

tion, then the sequence {xn} defined by (1.10) converges weakly to a common fixed

point of S1, S2, T1 and T2.

Proof Using the same method as given in Theorem 3.4, we can prove that there

exists a subsequence {xnk
} of {xn} which converges weakly to some q ∈ F =

F (S1) ∩ F (S2) ∩ F (T1) ∩ F (S2). Now, we prove that the sequence {xn} converges

weakly to q. Suppose that there exists a subsequence {xmj
} of {xn} such that {xmj

}

converges weakly to some q ∈ K and q 6= q. Then, as for q, we have q ∈ F . Using

Lemma 3.1, we have the following two limits exist:

lim
n→∞

‖xn − q‖ = c, lim
n→∞

‖xn − q‖ = c1.

Thus, by Opial’s condition, we have

c = lim sup
k→∞

‖xnk
− q‖

< lim sup
k→∞

‖xnk
− q‖

= lim sup
j→∞

‖xmj
− q‖

< lim sup
j→∞

‖xmj
− q‖ = c,

which is contradiction, and so q = q. This shows that the sequence {xn} converges

weakly to q. This completes the proof.
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Conclusions

In this chapter, we will present the main results obtained in this research.

4.1 Conclusions

Lemma 4.1 Let E be a real uniformly convex Banach space and K a nonempty closed

convex nonexpansive retract of E with P as a nonexpansive retraction. Let S1, S2

: K −→ K be two asymptotically nonexpansive self-mappings with{k(1)
n }, {k(2)

n } ⊂

[1,∞) and T1, T2 : K → E be two asymptotically nonexpansive nonself-mappings

with {l(1)
n }, {l(2)

n } ⊂ [1,∞) such that
∑∞

n=1(k
(i)
n − 1) < ∞ and

∑∞
n=1(l

(i)
n − 1) < ∞

for i = 1, 2, respectively and F = F (S1)∩F (S2)∩F (T1)∩F (T2) 6= ∅. Suppose that

{αn} and {βn} are real sequences in [0, 1). From an arbitrary x1 ∈ K, define the

sequence {xn} using (1.10) Then

(1) lim
n→∞

‖xn − q‖ exists for any q ∈ F ;

(2) lim
n→∞

d(xn, F ) exists.

Lemma 4.2 Let E ba a real uniformly convex Banach space and K a nonempty

closed convex nonexpansive retract of E with P as a nonexpansive retraction. Let

S1, S2 : K → K be two asymptotically nonexpansive self-mappings with {k(1)
n }, {k(2)

n } ⊂

[1,∞) and T1, T2 : K → E be two asymptotically nonexpansive nonself-mappings

with {l(1)
n }, {l(2)

n } ⊂ [1,∞) such that
∑∞

n=1(k
(i)
n − 1) < ∞ and

∑∞
n=1(l

(i)
n − 1) < ∞

for i = 1, 2, respectively and F = F (S1)∩F (S2)∩F (T1)∩F (T2) 6= ∅. Suppose that

{αn} and {βn} are real sequences in [ε, 1− ε] for some ε ∈ (0, 1). From an arbitrary

x1 ∈ K, define the sequence {xn} using (1.10). If ‖x − Tiy‖ ≤ ‖Six − Tiy‖ for all

x, y ∈ K and i = 1, 2, then lim
n→∞

‖xn − Sixn‖ = lim
n→∞

‖xn − Tixn‖ = 0 for i = 1, 2.

Theorem 4.1 Under the assumptions of Lemma 4.2, if one of S1, S2, T1 and T2

is completely continuous, then the sequence {xn} defined by (1.10) converges strong-

ly to a common fixed point of S1, S2, T1 and T2.
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Theorem 4.2 Under the assumptions of Lemma 4.2, if one of S1, S2, T1 and T2

is semi-compact, then the sequence {xn} defined by (1.10) converges strongly to a

common fixed point of S1, S2, T1 and T2.

Theorem 4.3 Under the assumptions of Lemma 4.2, if there exists a nondecreasing

function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such

that

f(d(x, F )) ≤ ‖x− S1x‖+ ‖x− S2x‖+ ‖x− T1x‖+ ‖x− T2x‖

for all x ∈ K, where F = F (S1) ∩ F (S2) ∩ F (T1) ∩ F (T2), then the sequence

{xn} defined by (1.10) converges strongly to a common fixed point of S1, S2, T1 and

T2.

Lemma 4.3 Under the assumptions of Lemma 4.1, for all q1, q2 ∈ F = F (S1) ∩

F (S2) ∩ F (T1) ∩ F (T2), the limit

lim
n→∞

‖txn + (1− t)q1 − q2‖

exists for all t ∈ [0, 1], where {xn} is the sequence defined by (1.10).

Theorem 4.4 Under the assumptions of Lemma 4.2, if E has Fréchet differentiable

norm, then the sequence {xn} defined by (1.10) converges weakly to a common fixed

point of S1, S2, T1 and T2.

Theorem 4.5 Under the assumptions of Lemma 4.2, if the dual space E? of E

has the Kadce-Klee property, then sequence {xn} defined by (1.10) converges weakly

to a common fixed point of S1, S2, T1 and T2.
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Theorem 4.6 Under the assumptions of Lemma 4.2, if E satisfies Opial’s condi-

tion, then the sequence {xn} defined by (1.10) converges weakly to a common fixed

point of S1, S2, T1 and T2.
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Abstract

In this research, we introduce a projection type iterative scheme of mixed type for two asymp-
totically nonexpansive self-mappings and two asymptotically nonexpansive nonself-mappings in
uniformly convex Banach spaces. Weak and Strong convergence theorems are established in
uniformly convex Banach spaces.

Keywords: mixed asymptotically nonexpansive mapping; strong and weak convergence; common fixed point;

uniformly convex Banach space.
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1 Introduction

Let K be a nonempty closed convex subset of a real normed linear space E. A self-mapping
T : K → K is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ K. A self-mapping
T : K → K is called asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞), kn → 1
as n →∞ such that

‖Tnx− Tny‖ ≤ kn‖x− y‖ (1.1)

for all x, y ∈ K and n ≥ 1.
A mapping T : K → K is said to be uniformly L-Lipschitzian if there exists a constant L > 0

such that

‖Tnx− Tny‖ ≤ L‖x− y‖ (1.2)
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kratai.in2304@hotmail.com (I. kapang,), tanakit.th@up.ac.th (T. Thianwan)
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for all x, y ∈ K and n ≥ 1.
It is easy to see that if T is an asymptotically nonexpansive, then it is uniformly L-Lipschitzian

with the uniform Lipschitz constant L = sup{kn : n ≥ 1}.
Fixed-point iteration process for nonexpansive self-mappings including Mann and Ishikawa it-

eration processes have been studied extensively by various authors [1, 9, 11, 16, 17, 22].
For nonexpansive nonself-mappings, some authors [10, 14, 25, 27, 32] have studied the strong and
weak convergence theorems in Hilbert space or uniformly convex Banach space. In 1972, Goebel
and Kirk [4] introduced the class of asymptotically nonexpansive self-mappings, who proved that
if K is nonempty closed convex subset of real uniformly convex Banach space and T is an asymp-
totically nonexpansive self-mapping on C, then T has a fixed point.

In 1991, Schu [23] introduced a modified Mann iteration process to approximate fixed points of
asymptotically nonexpansive self-mappings in Hilbret space. More precisely, he proved the follow-
ing theorem.

Theorem 1.1 (see [23]). Let H be a Hilbert space, and let K be a nonempty closed convex and
bounded subset of H. Let T : K → K be an asymptotically nonexpansive mapping with sequence
{kn} ⊂ [1,∞) for all n ≥ 1, limn→∞kn = 1 and

∑∞
n=1(k

2
n − 1) < ∞. Let {αn} be a sequence in

[0.1] satisfying the condition 0 < a ≤ αn ≤ b < 1, n ≥ 1, for some constant a, b. Then the sequence
{xn} generated from an arbitrary x1 ∈ K by the relation

xn+1 = (1− αn)xn + αnTnxn, n ≥ 1, (1.3)

converges strongly to some fixed point of T .
Since then, Schu’s iteration process has been widely used to approximate fixed points of asymp-

totically nonexpansive self-mappings in Hilbert or Banach
spaces (see [16],[20],[21],[23],[28]).

The concept of asymptotically nonexpansive nonself-mappings was introduced by Chidume,
Ofoedu, and Zegeye [4] in 2003 as the generlization of asymptotically nonexpansive self-mappings.
The nonself of asymptotically nonexpansive nonself-mapping is defined as follows.

Definition 1.2 (see [4]). Let K be a nonempty subset of a real normed linear space E. Let
P : E → K be a nonexpansive retraction of E onto K. A nonself-mapping T : K → E is said to be
asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) , kn → 1 as n →∞ such that

‖T (PT )n−1x−T (PT )n−1
1 y‖ ≤ kn‖x− y‖ (1.4)

for all x, y ∈ K and n ≥ 1. A non-self-mapping T is said to be uniformly L − Lipschitzian if
there exists a constant L ≥ 0 such that

‖T (PT )n−1x−T (PT )n−1
1 y‖ ≤ L‖x− y‖ (1.5)
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for all x, y ∈ K and n ≥ 1.
We denote by (PT )0 the identity map from K onto itself. In [2], the authors studied the fol-

lowing iterative sequence: x1 ∈ K,

xn+1 = P ((1−αn)xn +αnT (PT )n−1xn), (1.6)

to approximate some fixed point of T under suitable conditions.
If T is a self-mapping, then P becomes the identity mapping so that (1.4) and (1.5) reduce to

(1.1) and (1.2), respectively, and (1.6) reduces to (1.3).
In 2006, Wang[31] generalized the iteration process (1.8) as follows: x1 ∈ K,

yn = P ((1− βn)xn + βnT2(PT2)n−1xn),
xn+1 = P ((1−αn)xn +αnT1(PT1)n−1yn), n ≥ 1, (1.7)

where T1, T2 : K → E are asymptotically nonexpansive nonself-mappings and {αn} and {βn}
are real sequences in [0,1). He proved strong and weak convergence of the sequence {αn} defined
by (1.7) to a common fixed point of T1 and T2 under appropriate conditions. Meanwhile, the results
of [31] generalized the results of [2].

In 2009, a new iterative scheme which is called the projection type Ishikawa iteration for two
asymptotically nonexpansive nonself-mappings was defined and constructed by Thianwan [30]. It
is given as follows:

yn = P ((1− βn)xn + βnT2(PT2)n−1xn),
xn+1 = P ((1−αn)yn +αnT1(PT1)n−1yn), n ≥ 1, (1.8)

where {αn} and {βn} are appropriate real sequences in [0,1). He studied the scheme for two
asymptotically nonexpansive nonself-mappings and proved strong and weak convergence of the se-
quences {xn} and {yn} to a common fixed point of T1, T2 under suitable conditions in a uniformly
convex Banach space.

Note that Thianwan process (1.8) and Wang process (1.7) are independent neither reduces to
the other.

If T1 = T2 and βn = 0 for all n ≥ 1, then (1.8) reduces to (1.6). It also can be reduces to Schu
process (1.3).

Recently, Guo, Cho and Guo [7] studied the following iteration scheme: x1 ∈ K,

yn = P ((1− βn)Sn
2 xn + βnT2(PT2)n−1xn),

xn+1 = P ((1−αn)Sn
1 xn +αnT1(PT1)n−1yn), n ≥ 1, (1.9)

where S1, S2 : K → K are asymptotically nonexpansive self-mappings, T1, T2 : K → E are asymp-
totically nonexpansive nonself-mappings and {αn}, {βn} are two sequences in [0,1). They studied
the strong and weak convergence of the iterative scheme (1.9) under proper conditions.
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If S1 and S2 are the identity mappings, then the iterative scheme (1.9) reduces to the scheme
(1.7).

Motivated by these recent works, we introduce and study a new iterative scheme in this paper.
The scheme is defind as follows.

Let E be a real Banach space, K be a nonempty closed convex subset of E and P : E → K be
a nonexpansive retraction of E onto K. Let S1, S2 : K → K be two asymptotically nonexpansive
self-mappings and T1, T2 : K → E be two asymptotically nonexpansive nonself-mappings. Then,
we define the new iteration scheme of mixed type as follows : x1 ∈ K,

yn = P ((1− βn)Sn
2 xn + βnT2(PT )n−1xn),

xn+1 = P ((1−αn)Sn
1 yn +αnT1(PT )n−1yn), n ≥ 1, (1.10)

where {αn}, {βn} are two sequences [0,1).
The iterative scheme (1.10) is called the projective type iterative process for mixed type of

asymptotically nonexpansive mappings. If S1 and S2 are the identity mappings, then the iterative
scheme (1.10) reduces to (1.8).

Note that (1.9) and (1.10) are independent neither reduces to the other.
The purpose of this paper is to construct an iteration scheme for approxi-

mating common fixed points of two asymptotically nonexpansive self-mappings and
two asymptotically nonexpansive nonself-mappings and to prove some strong and weak convergence
theorems for such mappings in a real uniformly convex Banach space.

2 Preliminaries

We denote the set of common fixed points of S1, S2, T1 and T2 by F = F (S1)∩F (S2)∩F (T1)∩
F (T2) and denote the distance between a point z and a set A in E by d(z,A) = infx∈A ‖z − x‖.

Now, we recall some well-known concepts and results.
Let E be a real Banach space, E∗ be the dual space of E and J : E → 2E∗ be the normalized

duality mapping defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = ‖x‖}

for all x ∈ E, where 〈·, ·〉 denotes duality pairing between E and E∗. A single-valued normal-
ized duality mapping is denoted by j.

A subset K of a real Banach space E is called a retract of E [2] if there exists a continuous
mapping P : E → K such that Px = x for all x ∈ K. Every closed convex subset of a uniformly
convex Banach space is a retract. A mapping P : E → E is called a retraction if P 2 = P . It
follows that if a mapping P is a retraction, than Py = y for all y in the range of P .
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Recall that a Banach space E is said to satisfy Opial′s condition [15] if xn → x weakly as
n →∞ and x 6= y implying that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖.

A mapping T : K → E is said to be semi-compact if, for any sequence {xn} in K such that
‖xn − Txn‖ → 0 as n → ∞, there exists a subsequence {xnj} of {xn} such that {xnj} converges
strongly to x∗ ∈ K.

A Banach space E is said to have a Fréchet differentiable norm [17] if, for all x ∈ U = {x ∈
E : ‖x‖ = 1},

lim
t→0

‖x + ty‖ − ‖x‖
t

exists and is attained uniformly in y ∈ U .
A Banach space E is said to have the Kadec-Klee property [5] if for every sequence {xn} in

E, xn → x weakly and ‖xn‖ → ‖x‖, if follows that xn → x strongly.

In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.1 [26] Let {an}, {bn} and {cn} be three nonnegative sequences satisfying the follow-
ing condition:

an+1 ≤ (1 + bn)an + cn

for each n ≥ n0, where n0 is some nonnegative integer,
∑∞

n=n0
bn < ∞ and

∑∞
n=n0

cn < ∞.
Then limn→∞an exists.

Lemma 2.2 [23] Let E be a real uniformly convex Banach space and 0 < p ≤ tn < q < 1 for each
n ≥ 1. Also, suppose that {xn} and {yn} are two sequences of such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r, lim
n→∞

‖tnxn + (1− tn)yn‖ = r

hold for some r ≥ 0. Then limn→∞‖xn − yn‖ = 0.

Lemma 2.3 [2] Let E be a real uniformly convex Banach space, K be a nonempty closed con-
vex subset of E and T : K → E be an asymptotically nonexpansive mapping with a sequence
{kn} ⊂ [1,∞) and kn → 1 as n →∞. Then I −T is demiclosed at zero, i.e., if xn → x weakly and
xn − Txn → 0 strongly, then x ∈ F (T ), where F (T ) is the set of fixed points of T.

Lemma 2.4 [3] Let E be a uniformly convex Banach space and K be a convex subset of E. Then
there exists a strictly increasing continuous convex function γ : [0,∞) → [0,∞) with γ(0) = 0 such
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that, for each mapping S : K → K with a Lipschitz constant L > 0,

‖αn + (1− α)Sy − S(αx + (1− α)y)‖ ≤ Lγ1(‖x− y‖ − 1
L‖Sx− Sy‖)

for all x, y ∈ K and 0 < α < 1.

Lemma 2.5 [3] Let E be a uniformly convex Banach space such that its dual space E∗ has the
Kadec-Klee property. Suppose {xn} is a bounded sequence and f1, f2 ∈ Ww({xn}) such that

lim
n→∞

‖αxn + (1− α)f1 − f2‖

exists for all α ∈ [0, 1], where Ww({xn}) denotes the set of all weak subsequential limits of {xn}.
Then f1 = f2.

3 Main results

In this chapter, we prove theorems of strong and weak convergence of the iterative scheme given
in (1.10) to a common fixed point of mixed type of two asymptotically nonexpansive self-mappings
and two asymptotically nonexpansive nonself-mappings in uniformly convex Banach spaces.

In order to prove our main results, the following lemmas are needed.
Lemma 3.1 Let E be a real uniformly convex Banach space and K a nonempty closed convex non-
expansive retract of E with P as a nonexpansive retraction. Let S1, S2 : K −→ K be two asymp-
totically nonexpansive self-mappings with{k(1)

n }, {k(2)
n } ⊂ [1,∞) and T1, T2 : K → E be two asymp-

totically nonexpansive nonself-mappings with {l(1)
n }, {l(2)n } ⊂ [1,∞) such that

∑∞
n=1(k

(i)
n − 1) < ∞

and
∑∞

n=1(l
(i)
n − 1) < ∞ for i = 1, 2, respectively and F = F (S1) ∩ F (S2) ∩ F (T1) ∩ F (T2) 6= ∅.

Suppose that {αn} and {βn} are real sequences in [0, 1). From an arbitrary x1 ∈ K, define the
sequence {xn} using (1.10) Then

(1) lim
n→∞

‖xn − q‖ exists for any q ∈ F ;
(2) lim

n→∞
d(xn, F ) exists.

Proof Let q ∈ F . Setting hn = max{k(1)
n , k

(2)
n , l

(1)
n , l

(2)
n }. Using (1.10), we have

‖yn − q‖ = ‖P ((1− βn)Sn
2 xn + βnT2(PT2)n−1xn)− q‖

= ‖P ((1− βn)Sn
2 xn + βnT2(PT2)n−1xn)− P (q)‖

≤ ‖(1− βn)(Sn
2 xn − q) + βn(T2(PT2)n−1xn − q)‖

≤ (1− βn)hn‖xn − q‖+ βnhn‖xn − q‖

= hn‖xn − q‖, (3.1)
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and so

‖xn+1 − q‖ = ‖P ((1− αn)Sn
1 yn + αnT1(PT1)n−1yn)− q‖

= ‖P ((1− αn)Sn
1 yn + αnT1(PT1)n−1yn)− P (q)‖

≤ ‖(1− αn)(Sn
1 yn − q) + αn(T1(PT1)n−1yn − q)‖

≤ (1− αn)hn‖yn − q‖+ αnhn‖yn − q‖

= hn‖yn − q‖

≤ h2
n‖xn − q‖

= (1 + (h2
n − 1))‖xn − q‖. (3.2)

Since
∑∞

n=1(k
(i)
n − 1) < ∞ and

∑∞
n=1(l

(i)
n − 1) < ∞ for i = 1, 2, we have∑∞

n=1(h
2
n − 1) < ∞. It follows from Lemma 2.1 that lim

n→∞
‖xn − q‖ exists.

(2) Taking the infimum over all q ∈ F in (3.2), we have

d(xn+1, F ) ≤ (1 + (h2
n − 1))d(xn, F )

for each n ≥ 1. It follows from
∑∞

n=1(h
2
n − 1) < ∞ and Lemma 2.1 that the conclusion (2)

holds. This completes the proof.

Lemma 3.2 Let E be a real uniformly convex Banach space and K a nonempty closed convex
nonexpansive retract of E with P as a nonexpansive retraction. Let S1, S2 : K → K be two asymp-
totically nonexpansive self-mappings with {k(1)

n }, {k(2)
n } ⊂ [1,∞) and T1, T2 : K → E be two asymp-

totically nonexpansive nonself-mappings with {l(1)
n }, {l(2)

n } ⊂ [1,∞) such that
∑∞

n=1(k
(i)
n − 1) < ∞

and
∑∞

n=1(l
(i)
n − 1) < ∞ for i = 1, 2, respectively and F = F (S1) ∩ F (S2) ∩ F (T1) ∩ F (T2) 6= ∅.

Suppose that {αn} and {βn} are real sequences in [ε, 1− ε] for some ε ∈ (0, 1). From an arbitrary
x1 ∈ K, define the sequence {xn} using (1.10). If ‖x − Tiy‖ ≤ ‖Six − Tiy‖ for all x, y ∈ K and
i = 1, 2, then lim

n→∞
‖xn − Sixn‖ = lim

n→∞
‖xn − Tixn‖ = 0 for i = 1, 2.

Proof Suppose that ‖x − Tiy‖ ≤ ‖Six − Tiy‖ for all x, y ∈ K and i = 1, 2. Let q ∈ F . Set
hn = max{k(1)

n , k
(2)
n , l

(1)
n , l

(2)
n }. By Lemma 3.1, we are that limn→∞‖xn − q‖ exists. Assume that

lim
n→∞

‖xn − q‖ = c. Since
∑∞

n=1(h
2
n − 1) < ∞ and lim

n→∞
‖xn+1 − q‖ = c, letting n → ∞ in the

inequality (3.2), we have

lim
n→∞

‖(1−αn)(Sn
1 yn− q)+αnT1(PT1)n−1yn− q)‖ = c. (3.3)

In addition, ‖Sn
1 yn − q‖ ≤ k

(1)
n ‖yn − q‖, taking the lim sup on both sides in this inequality, we

have

lim sup
n→∞

‖Sn
1 yn − q‖ ≤ c. (3.4)
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Taking the lim sup on both sides in the inequality (3.1), we obtain lim sup
n→∞

‖yn − q‖ ≤ c, and
so

lim sup
n→∞

‖T1(PT1)n−1yn− q‖ ≤ lim sup
n→∞

l(1)n ‖yn− q‖ ≤ c. (3.5)

By using (3.3), (3.4), (3.5) and Lemma 2.2, we have

lim
n→∞

‖Sn
1 yn − T1(PT1)n−1yn‖ = 0. (3.6)

Since

‖yn−T1(PT1)n−1yn‖ ≤ ‖Sn
1 yn−T1(PT1)n−1yn‖. (3.7)

Letting n →∞ in the inequality (3.7), by (3.6), we have

lim
n→∞

‖yn − T1(PT1)n−1yn‖ = 0. (3.8)

From (3.2), we have

‖xn+1 − q‖ ≤ hn‖yn − q‖ ≤ h2
n‖yn − q‖. (3.9)

Taking the lim inf on both sidies in the inequality (3.9), we have

lim inf
n→∞

‖yn − q‖ ≥ c. (3.10)

Since lim sup
n→∞

‖yn − q‖ ≤ c, by (3.10), we have lim
n→∞

‖yn − q‖ = c. This implies that

c = lim ‖yn − q‖ ≤ lim
n→∞

‖(1− βn)(Sn
2 xn − q) + βn(T2(PT2)n−1xn − q)‖

≤ lim
n→∞

‖xn − q‖ = c,

and so

lim
n→∞

‖(1−βn)(Sn
2 xn− q)+βn(T2(PT2)n−1xn− q)‖ = c. (3.11)

In addition, we have

lim sup
n→∞

‖Sn
2 xn− q‖ ≤ lim sup

n→∞
k(2)

n ‖xn− q‖ = c (3.12)

and

lim sup
n→∞

‖T2(PT2)n−1xn−q‖ ≤ lim sup
n→∞

l(2)
n ‖xn−q‖ = c. (3.13)

It follows from (3.11), (3.12), (3.13) and Lemma 2.2 that
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lim
n→∞

‖Sn
2 xn − T2(PT2)n−1xn‖ = 0. (3.14)

Now, we prove that

lim
n→∞

‖xn − T1xn‖ = lim
n→∞

‖xn − T2xn‖ = 0.

Indeed, since ‖xn−T2(PT2)n−1xn‖ ≤ ‖Sn
2 xn−T2(PT2)n−1xn‖. (3.15)

Using (3.14) and (3.15), we have

lim
n→∞

‖xn − T2(PT2)n−1xn‖ = 0. (3.16)

Since Sn
2 xn = P (Sn

2 xn) and P : E → K is nonexpansive rectraction of E onto K, we have

‖yn − Sn
2 xn‖ ≤ ‖(1− βn)(Sn

2 xn − Sn
2 xn) + βn(T2(PT2)n−1xn − Sn

2 xn)‖

≤ βn‖T2(PT2)n−1xn − Sn
2 xn‖.

Using (3.14), we have

lim
n→∞

‖yn − Sn
2 xn‖ = 0. (3.17)

Furthermore, we have

‖yn − xn‖ ≤ ‖yn − Sn
2 xn‖+ ‖Sn

2 xn − T2(PT2)n−1xn‖
+‖T2(PT2)n−1xn − xn‖. (3.18)

It follows from (3.14), (3.16), (3.17) and (3.18) that

lim
n→∞

‖xn − yn‖ = 0. (3.19)

Since

‖xn − T1(PT1)n−1xn‖ ≤ ‖Sn
1 xn − T1(PT1)n−1xn‖

and

‖Sn
1 xn − T1(PT1)n−1xn‖ ≤ ‖Sn

1 xn − Sn
1 yn‖+ ‖Sn

1 yn − T1(PT1)n−1yn‖
+‖T1(PT1)n−1yn − T1(PT1)n−1xn‖

= k
(1)
n ‖xn − yn‖+ ‖Sn

1 yn + T1(PT1)n−1yn‖
+l

(1)
n ‖yn − xn‖. (3.20)
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Using (3.6), (3.19) and (3.20), we have

lim
n→∞

‖Sn
1 xn −T1(PT1)n−1xn‖ = 0, (3.21)

and so

lim
n→∞

‖xn − T1(PT1)n−1xn‖ = 0. (3.22)

In addition,

‖xn+1 − Sn
1 yn‖ = ‖P ((1− αn)Sn

1 yn + αnT1(PT1)n−1yn)− P (Sn
1 yn)‖

≤ (1− αn)‖Sn
1 yn − Sn

1 yn‖+ αn‖T1(PT1)n−1yn − Sn
1 yn‖.

Thus, it follows from (3.6) that

lim
n→∞

‖xn+1 − Sn
1 yn‖ = 0. (3.23)

In addition,

‖xn+1 − T1(PT1)n−1yn‖ ≤ ‖xn+1 − Sn
1 yn‖+ ‖Sn

1 yn − T1(PT1)n−1yn‖.

By using (3.6) and (3.23), we have

lim
n→∞

‖xn+1 − T1(PT1)n−1yn‖ = 0. (3.24)

It follows from (3.21) and (3.22) that

‖Sn
1 xn − xn‖ = ‖Sn

1 xn − T1(PT1)n−1xn + T1(PT1)n−1xn − xn‖

≤ ‖Sn
1 xn − T1(PT1)n−1xn‖+ ‖T1(PT1)n−1xn − xn‖ (3.25)

→ 0 (as n →∞).

In addition,

‖Sn
1 xn − T2(PT2)n−1xn‖ = ‖Sn

1 xn − xn + xn − T2(PT2)n−1xn‖

≤ ‖Sn
1 xn − xn‖+ ‖xn − T2(PT2)n−1xn‖.

Thus, it follows from (3.16) and (3.25) that

lim
n→∞

‖Sn
1 xn − T2(PT2)n−1xn‖ = 0. (3.26)

In addition,
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‖Sn
1 yn − T2(PT2)n−1xn‖ = ‖Sn

1 yn − Sn
1 xn + Sn

1 xn − T2(PT2)n−1xn‖

≤ ‖Sn
1 yn − Sn

1 xn‖+ ‖Sn
1 xn − T2(PT2)n−1xn‖

≤ k(1)
n ‖yn − xn‖+ ‖Sn

1 xn − T2(PT2)n−1xn‖.

By using (3.19) and (3.26), we have

lim
n→∞

‖Sn
1 yn − T2(PT2)n−1xn‖ = 0. (3.27)

It follows from (3.23) and (3.27) that

‖xn+1 − T2(PT2)n−1yn‖ = ‖xn+1 − Sn
1 yn + Sn

1 yn − T2(PT2)n−1xn‖

= ‖xn+1 − Sn
1 yn‖+ ‖Sn

1 yn − T2(PT2)n−1xn‖

→ 0 (as n →∞). (3.28)

Again, since (PTi)(PTi)n−2yn−1, xn ∈ K for i = 1, 2 and T1, T2 are two asymptotically nonex-
pansive nonself-mappings, we have

‖Ti(PTi)n−1yn−1 − Tixn‖ = ‖Ti((PTi)(PTi)n−2yn−1)− Ti(Pxn)‖

≤ max{l(1)1 , l
(2)
1 }‖(PTi)(PTi)n−2yn−1 − Pxn‖

≤ max{l(1)1 , l
(2)
1 }‖Ti(PTi)n−2yn−1 − xn‖. (3.29)

Using (3.24) , (3.28) and (3.29), for i = 1, 2, we have

lim
n→∞

‖Ti(PTi)n−1yn−1 − Tixn‖ = 0. (3.30)

Moreover, we have

‖xn+1 − yn‖ ≤ ‖xn+1 − T1(PT1)n−1yn‖+ ‖T1(PT1)n−1yn − yn‖.

Using (3.8) and (3.24), we have

lim
n→∞

‖xn+1 − yn‖ = 0. (3.31)

In addition, for i = 1, 2, we have

‖xn − Tixn‖ ≤ ‖xn − Ti(PTi)n−1xn‖+ ‖Ti(PTi)n−1xn − Ti(PTi)n−1yn−1‖
+‖Ti(PTi)n−1yn−1 − Tixn‖

≤ ‖xn − Ti(PTi)n−1xn‖+ max{sup
n≥1

l(1)
n , sup

n≥1
l2n}‖xn − yn−1‖

+‖Ti(PTi)n−1yn−1 − Tixn‖.
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Thus, it follows from (3.16), (3.22), (3.30) and (3.31) that

lim
n→∞

‖xn − T1xn‖ = lim
n→∞

‖xn − T2xn‖ = 0.

Finally, we prove that

lim
n→∞

‖xn − S1xn‖ = lim
n→∞

‖xn − S2xn‖ = 0.

In fact, for i = 1, 2, we have

‖xn − Sixn‖ ≤ ‖xn − Ti(PTi)n−1xn‖+ ‖Sixn − Ti(PTi)n−1xn‖

≤ ‖xn − Ti(PTi)n−1xn‖+ ‖Sn
1 xn − Ti(PTi)n−1xn‖.

Thus, it follows from (3.16), (3.21), (3.22) and (3.26) that

lim
n→∞

‖xn − S1xn‖ = lim
n→∞

‖xn − S2xn‖ = 0.

The proof is completed.

Now, we find two mapping, S1 = S2 = S and T1 = T2 = T , satisfying the condition
‖x− Tiy‖ ≤ ‖Sixn − Tiy‖ for all x, y ∈ K and i = 1, 2 in Lemma 3.2 as follows.

Example 3.1[13] Let R be the real line with the usual norm | · | and let K = [−1, 1]. Define
two mappings S, T : K → K by

Tx =

{
−2 sin x

2 , if x ∈ [0, 1],
2 sin x

2 , if x ∈ [−1, 0)

and

Sx =

{
x, if x ∈ [0, 1]
−x, if x ∈ [−1, 0).

Now, we show that T is nonexpansive. In fact, if x, y ∈ [0, 1] or x, y ∈ [−1, 0), than we have
|Tx− Ty| = 2| sin x

2 − sin y
2 | ≤ |x− y|.

If x ∈ [0, 1] and y ∈ [−1, 0) or x ∈ [−1, 0) and y ∈ [0, 1], then we have

|Tx− Ty| = 2| sin x

2
− sin

y

2
|

= 4| sin x + y

4
cos

x− y

4
|

≤ |x + y|

≤ |x− y|.
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This implies that T is nonexpansive, and so T is an asymptotically nonexpansive mapping with
kn = 1 for each n ≥ 1. Similarly, we can show that S is an asymptotically nonexpansive mapping
with ln = 1 for each n ≥ 1.

Next, we consider the following cases:
Case 1. Let x, y ∈ [0, 1]. Then we have

|x− Ty| = |x + 2 sin y
2 | = |Sx− Ty|.

Case 2. Let x, y ∈ [−1, 0). Then we have
|x− Ty| = |x− 2 sin y

2 | ≤ | − x− 2 sin y
2 | = |Sx− Ty|.

Case 3. Let x ∈ [−1, 0) and y ∈ [0, 1]. Then we have
|x− Ty| = |x + 2 sin y

2 | ≤ | − x + 2 sin y
2 | = |Sx− Ty|.

Case 4. Let x ∈ [0, 1] and y ∈ [−1, 0]. Then we have
|x− Ty| = |x− 2 sin y

2 | = |Sx− Ty|.

Theorem 3.1 Under the assumptions of Lemma 3.2, if one of S1, S2, T1 and T2 is completely con-
tinuous, then the sequence {xn} defined by (1.10) converges strongly to a common fixed point of
S1, S2, T1 and T2.

Proof Without loss of generality, we can assume that S1 is completely continuous. Since {xn} is
bounded by Lemma 3.1, there exists a subsequence {S1xnj} of {S1xn} such that {S1xnj} converges
strongly to some q∗. Moreover, we know that

lim
j→∞

‖xnj − S1xnj‖ = lim
j→∞

‖xnj − S2xnj‖ = 0

and
lim

j→∞
‖xnj − T1xnj‖ = lim

j→∞
‖xnj − T2xnj‖ = 0

by Lemma 3.2, which imply that

‖xnj − q∗‖ ≤ ‖xnj − S1xnj‖+ ‖S1xnj − q∗‖ → 0

as j →∞, and so xnj → q∗ ∈ K. Thus, by the continuity of S1, S2, T1 and T2, we have

‖q∗ − Siq
∗‖ = lim

j→∞
‖xnj − Sixnj‖ = 0

and
‖q∗ − Tiq

∗‖ = lim
j→∞

‖xnj − Tixnj‖ = 0

for i = 1, 2. Thus it follows that q∗ ∈ F (S1) ∩ F (S2) ∩ F (T1) ∩ F (T2). Furthermore, since
lim

n→∞
‖xn − q∗‖ exists by Lemma 3.1, we have lim

n→∞
‖xn − q∗‖ = 0. This completes the proof.

Theorem 3.2 Under the assumptions of Lemma 3.2, if one of S1, S2, T1 and T2 is semi-compact,
then the sequence {xn} defined by (1.10) converges strongly to a common fixed point of S1, S2, T1

and T2.
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Proof Since lim
n→∞

‖xn − Sixn‖ = lim
n→∞

‖xn − Tixn‖ = 0 for i = 1, 2 by Lemma 3.2 and one
of S1, S2, T1 and T2 is semi-compact, there exists a subsequence {xnj} of {xn} such that {xnj}
converges strongly to some q∗ ∈ K. Moreover, by the continuity of S1, S2, T1 and T2, we have
‖q∗ − Siq

∗‖ = lim
j→∞

‖xnj − Sixnj‖ = 0 and ‖q∗ − Tiq
∗‖ = lim

j→∞
‖xnj − Tixnj‖ = 0 for i = 1, 2. Thus

it follows that q∗ ∈ F (S1) ∩ F (S2) ∩ F (T1) ∩ F (T2). Since lim
n→∞

‖xn − q∗‖ exists by Lemma 3.1, we
have lim

n→∞
‖xn − q∗‖ = 0. This completes the proof.

Theorem 3.3 Under the assumptions of Lemma 3.2, if there exists a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that

f(d(x, F )) ≤ ‖x− S1x‖+ ‖x− S2x‖+ ‖x− T1x‖+ ‖x− T2x‖

for all x ∈ K, where F = F (S1) ∩ F (S2) ∩ F (T1) ∩ F (T2), then the sequence {xn} defined by
(1.10) converges strongly to a common fixed point of S1, S2, T1 and T2.

Proof Since lim
n→∞

‖xn − Sixn‖ = lim
n→∞

‖xn − Tixn‖ = 0 for i = 1, 2 by Lemma 3.2, we have
lim

n→∞
f(d(xn, F )) = 0. Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying f(0) =

0, f(r) > 0 for all r ∈ (0,∞) and lim
n→∞

d(xn, F ) exists by Lemma 3.1, we have lim
n→∞

d(xn, F ) = 0.
Now, we show that {xn} is a Cauchy sequence in K. In fact, from (3.2), we have

‖xn+1 − q‖ ≤ (1 + (h2
n − 1))‖xn − q‖

for each n ≥ 1, where hn = max{k(1)
n , k

(2)
n , l

(1)
n , l

(2)
n } and q ∈ F . For any m,n,m > n ≥ 1,

we have

‖xm − q‖ ≤ (1 + (h2
m−1 − 1))‖xm−1 − q‖

≤ e
h2

m−1−1‖xm−1 − q‖

≤ e
h2

m−1−1e
h2

m−2−1‖xm−2 − q‖
...

≤ e
Pm−1

i=n (h2
i−1)‖xn − q‖

≤ M‖xn − q‖,

where M = eΣ∞i=1(h2
i−1). Thus, for any q ∈ F , we have

‖xn − xm‖ ≤ ‖xn − q‖+ ‖xm − q‖

≤ (1 + M)‖xn − q‖.

Taking the infimum over all q ∈ F , we obtain

‖xn − xm‖ ≤ (1 + M)d(xn, F ).
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Thus it follows from lim
n→∞

d(xn, F ) = 0 that {xn} is a Cauchy sequence. Since K is a closed
subset of E, the sequence {xn} converges strongly to some q∗ ∈ K. It is easy to prove that
F (S1), F (S2), F (T1) and F (T2) are all closed and so F is a closed subset of K. Since lim

n→∞
d(xn, F ) =

0, q∗ ∈ F , the sequence {xn} converges strongly to a common fixed point of S1, S2, T1 and T2.
This completes the proof.

The remainder of the section, we deal with the weak convergence of the iterative scheme (1.10)
to a common fixed point of mixed type of two asymptotically nonexpansive self-mappings and two
asymptotically nonexpansive nonself-mappings in uniformly convex Banach spaces.

Lemma 3.3 Under the assumptions of Lemma 3.1, for all q1, q2 ∈ F = F (S1) ∩
F (S2) ∩ F (T1) ∩ F (T2), the limit

lim
n→∞

‖txn + (1− t)q1 − q2‖

exists for all t ∈ [0, 1], where {xn} is the sequence defined by (1.10).

Proof Set an(t) = lim
n→∞

‖txn + (1 − t)q1 − q2‖. Then lim
n→∞

an(0) = ‖q1 − q2‖ and, from Lemma
3.1, lim

n→∞
an(1) = lim

n→∞
‖xn − q2‖ exists. Thus it remains to prove Lemma 3.3 for any t ∈ (0, 1).

Define the mapping Gn : K → K by

Gnx = P ((1− αn)Sn
1 P ((1− βn)Sn

2 x + βnT2(PT2)n−1x) +

αnT1(PT1)n−1P ((1− βn)Sn
2 x + βnT2(PT2)n−1x))

for all x ∈ K. It follows that

‖Gnx−Gny‖ = ‖P ((1− αn)Sn
1 P ((1− βn)Sn

2 x + βnT2(PT2)n−1x) +

αnT1(PT1)n−1P ((1− βn)Sn
2 x + βnT2(PT2)n−1x))−

‖P ((1− αn)Sn
1 P ((1− βn)Sn

2 y + βnT2(PT2)n−1y) +

αnT1(PT1)n−1P ((1− βn)Sn
2 y + βnT2(PT2)n−1y))‖

≤ ‖((1− αn)Sn
1 P ((1− βn)Sn

2 x + βnT2(PT2)n−1x) +

αnT1(PT1)n−1P ((1− βn)Sn
2 x + βnT2(PT2)n−1x))−

‖((1− αn)Sn
1 P ((1− βn)Sn

2 y + βnT2(PT2)n−1y) +

αnT1(PT1)n−1P ((1− βn)Sn
2 y + βnT2(PT2)n−1y))‖

= (1− αn)‖(Sn
1 ((1− βn)Sn

2 x + βnT2(PT2)n−1x)−

(Sn
1 ((1− βn)Sn

2 y + βnT2(PT2)n−1y) +

αn(T1(PT1)n−1P ((1− βn)Sn
2 x + βnT2(PT2)n−1x))−

(T1(PT1)n−1P ((1− βn)Sn
2 y + βnT2(PT2)n−1y))‖
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≤ (1− αn)hn‖((1− βn)(Sn
2 x− Sn

2 y) + βnT2(PT2)n−1(x− y)‖+

αnhn‖(1− βn)(Sn
2 x− Sn

2 y) + βnT2(PT2)n−1(x− y)‖

≤ (1− αn)hn‖(1− βn)(Sn
2 x− Sn

2 y)‖

+(1− αn)hn‖βnT2(PT2)n−1(x− y)‖

+αnhn‖(1− βn)(Sn
2 x− Sn

2 y)‖+ αnhn‖βnT2(PT2)n−1(x− y)‖

= (h2
n + h2

nβn − αnh2
n + h2

nαnβn)‖x− y‖+ h2
nβn‖x− y‖

αnhnβn‖x− y‖+ αnh2
n(1− βn)‖x− y‖+ αnβnh2

n‖x− y‖

= (h2
n + h2

nβn − αnh2
n + h2

nαnβn)‖x− y‖+ h2
nβn‖x− y‖

αnh2
nβn‖x− y‖+ +αnβnh2

n‖x− y‖

= h2
n‖x− y‖ (3.32)

for all x, y ∈ K, where hn = max{k(1)
n , k

(2)
n , l

(1)
n , l

(2)
n }. Letting hn = 1 + vn, it follows from

1 ≤
∏∞

j=n h2
j ≤ e2

P∞
j=n vj and

∑∞
n=1 vn < ∞ that lim

n→∞

∏∞
j=n h2

j = 1. Setting

Sn,m = Gn+m−1Gn+m−2...Gn (3.33)

for each m ≥ 1, from (3.32) and (3.33), it follows that

‖Sn,mx− Sn,my‖ (
n+m−1∏

j=n

h2
j )‖x− y‖

for all x, y ∈ K and Sn,mxn = xn+m, Sn,mq = q for any q ∈ F . Let

bn,m = ‖tSn,mxn + (1− t)Sn,mq1 − Sm,n(txn + (1− t)q1)‖. (3.34)

Then, using (3.34) and Lemma 2.4, we have

bn,m ≤ (
n+m−1∏

j=n

h2
j )γ

−1(‖xn − q1‖ − (
n+m−1∏

j=n

h2
j )
−1‖Sn,mxn − Sn,mq1‖)

≤ (
∞∏

j=n

h2
j )γ

−1(‖xn − q1‖ − (
∞∏

j=n

h2
j )
−1‖xn,m − q1‖).

It follows from Lemma 3.1 and lim
n→∞

∞∏
j=n

h2
j = 1 that lim

n→∞
bn,m = 0
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uniformly for all m. Observe that

an,m(t) ≤ ‖Sn,m(txn + (1− t)q1)− q2‖+ bn,m

= ‖Sn,m(txn + (1− t)q1)− Sn,mq2‖+ bn,m

≤ (
n+m−1∏

j=n

h2
j )‖txn + (1− t)q1 − q2‖+ bn,m

≤ (
∞∏

j=n

h2
j )an(t) + bn,m.

Thus we have lim sup
n→∞

an(t) ≤ lim inf
n→∞

an(t), That is, lim
n→∞

‖txn+(1−t)q1−q2‖ exists for all t ∈ (0, 1).

This completes the proof.

Lemma 3.4 Under the assumptions of Lemma 3.1, if E has a Fréchet differentiable norm,
then, for all q1, q2 ∈ F = F (S1) ∩ F (S2) ∩ F (T1) ∩ F (T2), the limit

lim
n→∞

〈xn, j(q1 − q2)〉

exists, where {xn} is the sequence defined by (1.10). Furthermore, if Ww({xn}) denotes the set
of all weak subsequential limits of {xn}, then 〈x∗ − y∗, j(q1 − q2)〉 = 0 for all q1, q2 ∈ F and
x∗, y∗ ∈ Ww({xn}).
Proof This follows basically as in the proof of Lemma 3.2 of [12] using Lemma 3.3 instead of
Lemma 3.1 of [8].

Theorem 3.4 Under the assumptions of Lemma 3.2, if E has Fréchet differentiable norm, then the
sequence {xn} defined by (1.10) converges weakly to a common fixed point of S1, S2, T1 and T2.

Proof Since E is a uniformly convex Banach space the sequence {xn} is bounded by Lemma
3.1, there exists a subsequence {xnk

} of {xn} which converges weakly to some q ∈ K. By Lemma
3.2, we have

lim
k→∞

‖xnk
− Sixnk

‖ = lim
k→∞

‖xnk
− Tixnk

‖ = 0

for i = 1.2. It follows Lemma 2.3 that q ∈ F = F (S1) ∩ F (S2) ∩ F (T1) ∩ F (T2).
Now, we prove that the sequence {xn} converges weakly to q. Suppose that there exists a subse-
quence {xmj} of {xn} such that {xmj} converges weakly to some q1 ∈ K. Then, by the same method
given above can also prove that q1 ∈ F . So, q1, q2 ∈ F ∩ Ww({xn}). It follows from Lemma 3.4 that

‖q − q1‖2 = 〈q − q1, j(q − q1)〉 = 0.

Therefore, q1 = q, which shows that the sequence {xn} converges weakly to q. This completes
the proof.
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Theorem 3.5 Under the assumptions of Lemma 3.2, if the dual space E? of E has the Kadce-
Klee property, then sequence {xn} defined by (1.10) converges weakly to a common fixed point of
S1, S2, T1 and T2.

Proof Using the same method given in Theorem 3.4, we can prove that there exists a subsequence
{xnk

} of {xn} which converges weakly to some q ∈ F = F (S1) ∩ F (S2) ∩ F (T1) ∩ F (S2). Now,
we prove that the sequence {xn} converges weakly to q. Suppose that there exists a subsequence
{xmj} of {xn} such that {xmj} converges weakly to some q∗ ∈ K. Then, as for q, we have q∗ ∈ F .
It follows from Lemma 3.3 that the limit

lim
n→∞

‖txn − (1− t)q − q∗‖

exists for all t ∈ [0, 1]. Again, since q, q∗ ∈ Ww({xn}), q∗ = q be Lemma 2.5. This shows that the
sequence {xn} converges weakly to q. This completes the proof.

Theorem 3.6 Under the assumptions of Lemma 3.2, if E satisfies Opial’s condition, then the
sequence {xn} defined by (1.10) converges weakly to a common fixed point of S1, S2, T1 and T2.

Proof Using the same method as given in Theorem 3.4, we can prove that there exists a sub-
sequence {xnk

} of {xn} which converges weakly to some q ∈ F = F (S1) ∩ F (S2) ∩ F (T1) ∩ F (S2).
Now, we prove that the sequence {xn} converges weakly to q. Suppose that there exists a subse-
quence {xmj} of {xn} such that {xmj} converges weakly to some q ∈ K and q 6= q. Then, as for q,
we have q ∈ F . Using Lemma 3.1, we have the following two limits exist:

lim
n→∞

‖xn − q‖ = c, lim
n→∞

‖xn − q‖ = c1.

Thus, by Opial’s condition, we have

c = lim sup
k→∞

‖xnk
− q‖

< lim sup
k→∞

‖xnk
− q‖

= lim sup
j→∞

‖xmj − q‖

< lim sup
j→∞

‖xmj − q‖ = c,

which is contradiction, and so q = q. This shows that the sequence {xn} converges weakly to q.
This completes the proof.
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