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CHAPTER I

Introduction

Let H be a real Hilbert space. We study the following inclusion problem:

find © € H such that

0 € Az + B# (1.1.1)

where A : H — H is an operator and B : H — 2 is a set-valued operator.
If A:=VF and B := 0G, where VF is the gradient of F' and G is the
subdifferential of G which is defined by

0G(x)={z€ H:(y—uz,2) + G(z) < G(y),Yy € H}. (1.1.2)

Then problem (1.1.1) becomes the following minimization problem:

min F(z) + G(x) (1.1.3)

zeH

To solve the inclusion problem via fixed point theory, let us define, for r > 0,

the mapping 7, : H — H as follows:

T, = (I +7rB) (I —rA). (1.1.4)

It is known that solutions of the inclusion problem involving A and B can be

characterized via the fixed point equation:

To=x & x=I+rB) ' (z—rAx)
& x—rAr € x+rBx

< 0€ Ar + Bz,



which suggests the following iteration process: z; € H and
Ty = (I + TnB)_l(ajn —rpAzy),n > 1, (1.L5)

where {r,} C (0, 00).
Xu [18] and Kamimura-Takahashi [7] introduced the following inexact iter-

ation process: u,r; € H and
T = apu+ (1 —ap) .,z + €n,n > 1, (1.1.6)

where {a,} C (0,1),{r,} C (0,00),{e,} € H and J,, = (I +r,B)"". It was
proved the strong convergence under some mild conditions. This scheme was also
investigated subsequently by [I, 2, 12] with different conditions. In [19], Yao-Noor

proposed the generalized version of the scheme (1.1.6) as follows: u,z; € H and
Tpi1 =+ Bty + (1 = By — o) Jr, Ty + €5,n > 1, (1.1.7)

where {a,}, {#,} C (0,1) with 0 < a,, + 3, < 1,{r,} C (0,00) and {e,} C H.
The strong convergence is discussed with some suitable conditions. Recently, Wang-

Cui [17] also studied the contraction-proximal point algorithm (1.1.7) by the relaxed

conditions on parameters: o, — 0, Z o, = oo, limsup £, < 1,liminfr, > 0, and
n—oo

n—00
n=1

o0
either Z llen|| < oo or % — 0.
n=1

Takahashi et al. [16] introduced the following Halpern-type iteration process:

u,x1 € H and

Tpi1 = apu+ (1 — )y, (2, — rAzy,),n > 1, (1.1.8)



where {a,,} C (0,1),{r,} C (0,00), A is an a-inverse strongly monotone operator
on H and B is a maximal monotone operator on H. They proved that {z, } defined

by (1.1.8) strongly converges to zeroes of A 4+ B if the following conditions hold:

(7) lim o, = O,Zan = 00;

n=1

o0
(i) Z |Qtn1 — Q| < 00;

n=1

(i10) Y~ |Png1 — ] < 005
n=1
() 0 <a<r, <2aq.
Takahashi et al. [16] also studied the following iterative scheme: u,z,; € H

and
Tpy1 = Bnxn + (1 — Bo)(au + (1 — o)y, (20 — 1pAzy)),n > 1, (1.1.9)

where {a,},{8,} € (0,1) and {r,} C (0,00). They proved that {z,} defined by

(1.1.9) strongly converges to zeroes of A+ B if the following conditions hold:

(Z) nh—>nolo a, =0, Z Qp = 005
n=1

(i1) 0<b<pB,<c<l;

(23i) lim |41 — 70| = 0;

n—oo

(iv) 0<a<r,<2a.

There have been, in the literature, many methods constructed to solve the
inclusion problem for maximal monotone operators in Hilbert or Banach spaces; see,
for examples, in [4, 9, 10]

Let C' be a nonempty, closed and convex subset in a Hilbert space H and

let 7" be a nonexpansive mapping of C' into itself, that is,
1Tz =Tyl < [lz -y (1.1.10)

for all z,y € C. We denote by F'(T') the set of fixed points of 7.



The iteration procedure of Mann’s type for approximating fixed points of a

nonexpansive mapping 7' is the following: z; € C' and
Tpi1 = pp+ (1 —an)Tz,, n>1 (1.1.11)

where {a,,} is a sequence in [0, 1].
On the other hand, the iteration procedure of Halpern’s type is the following:

r1 =z € C and
Tp1 =+ (1 — )Tz, n>1 (1.1.12)

where {o,} is a sequence in [0, 1].

Recently, Thakahashi et al.[14] proved the following theorem for solving the
in inclusion problem and the fixed point problem of nonexpansive mappings.

Theorem TTT [14] Let C be a closed and convex subset of a real Hilbert
space H. Let A be an a-inverse strongly-monotone mapping of C' into H and let B
be a maximal monotone operator on H such that the domain of B is included in C.
Let Jy = (I + AB)™! be the resolvent of B for A > 0 and let 7' be a nonexpansive
mapping of C into itself such that F(T) N (A+ B)"'0 # () Let z; = x € C and let

{z,} C C be a sequence generated by
Tpi1 = Bun + (1= Bo)T(anz + (1 — ), (2, — Ay Az,)) (1.1.13)

for all n € N, where {\,} C (0,2«a),{3,} C (0,1) and {a,,} C (0,1) satisfy

0<a< )\, <b<2a, 0<c<p,<d<l1,

lim (A, = Ang1) = 0, lim o, =0 and Y @, = o0
n—oo n—oo —1

Then {x,} converges strongly to a point of F'(7') N (A + B)~!0.



In this paper, motivated by Takahashi et al.[15] and Halpern,[5] we introduce
an iteration of finding a common point of the set of fixed points of nonexpansive
mappings and the set of inclusion problems for inverse strongly-monotone mappings
and maximal monotone operators. We then prove strong and weak convergence the-
orems under suitable conditions. Finally, we provide some numerical examples to

support our iterative methods.



CHAPTER 1I

Preliminaries and lemmas

2.1 Preliminaries

In section, we give some preliminaries which will be used in the sequel.

Definition 2.1.1 [3](Norm space) A function x —|| = || from a vector space E
into R is called a norm if it satisfies following conditions:

() ||z ||>0 for every x € E,

) ||z ||=04f and only if z = 0,

B) [ X ||=|Al ||z || for every x € E and A\ € R,

@ lz+yl<llzl+I[yll forevery z,yeE.

Therefore, normed space is denoted by (F, || - ||).

Definition 2.1.2 [3](Inner product space) Let £ be a complex vector space. A
mapping (-,+) : E X E — C is called an inner product in F if for any z,y,z € E
and «, 3 € C the following conditions are satisfied:

M (z,y) = (x,9),

2) (ax+ Py, z) = afz, 2) + By, 2),

3) (z,z) >0, and (z,x) = 0 implies © = 0.

Definition 2.1.3 [7](Convergent sequence) Let {a,} be a sequence of R, we say

that {a, } is convergent to a € R if and only if Ve > 0 there exists NV € N such that

la, —al <e&; Yn > N. (2.1.1)

If {a,} converges to a then we say that {a,} is a convergent sequence,

a € R is called limit of a sequence, which is denoted by lim a, = a.

n—oo



Definition 2.1.4 [7](Bounded sequence) Let {a,} be a sequence of R, we say

that {a, } is a bounded sequence if and only if there exists X > 0 such that
la,| < K; Vn > N. (2.1.2)

Definition 2.1.5 [7](Cauchy sequence) Let {a,} be a sequence of R, we say that

a, is a Cauchy sequence if and only if Ve > 0 there exists N € N such that
| — an| < g;¥Vm,n > N.
Definition 2.1.6 [3](Complete norm space) A norm space FE is called complete

if every Cauchy sequence in E converges to an element of F.

Definition 2.1.7 [3](Hilbert space) A complete inner product space is called a

Hilbert space.

Example 2.1.8 /5] The Euclidean space R" is a Hilbert space with inner product
defined by

(r,y) = 2191 + Tays + .. + TpYn
where v = (T1,%9, ..., %), Y= (Y1,Y2, -, Yn) € R".
Example 2.1.9 [8]The space |y is a Hilbert space with inner product defined by
) = S
j=1

where .,y € ls.



Definition 2.1.10 [0] (Fixed point) Let K be a subset of a normed linear space
E. LetT : K — E be a nonlinear mapping. Then z is a fixed point of 7" if x = T'z.
We denote F'(T') by the fixed point set of 7.

Example 2.1.11 If f is defined on the real number by
f(x) =% -3z +4
then 2 is a fixed point of f, because f(2) = 2.
Example 2.1.12 If T is defined on the real number by
T(z)=a?—x
then 0 and 2 are fixed points of T, because T(0) =0 and T(2) = 2.
When {x,} is a sequence in H, z,, — = implies that {x,,} converges weakly
to x and x,, — x means the strong convergence. In a real Hilbert space, we have

Az + (1= Nyll* = All® + @ = Vlyll* =A@ = Nz -y, (2.1.3)

for all x,y € H and A € R.

We know the following Opial’s condition:
liminf ||z, — u| < liminf ||z, — v|| (2.1.4)

if z, — u and u # v.



Let C' be a nonempty, closed and convex subset of a Hilbert space H. The
nearest point projection of H onto C'is denoted by P, that is, ||z — Poz|| < ||z —y||
for all z € H and y € C. The operator P is called the metric projection of H onto

C. We know that the metric projection P is firmly nonexpansive, for all x,y € H
|Pex — Poyl]* < (Pex — Poy,x —y). (2.1.5)
or equivalently

1Pex = Poyll* < |z —ylI* = (I = Po)z — (I = Po)yll*. (2.1.6)

It is well known that Pp is characterized by the inequality, for all z € H and y € C
(x — Pex,y — Pox) < 0. (2.1.7)
In a real Hilbert space H, we have the following equality:
(@9 = Sllall + Syl = Sl = ol @18
and the subdifferential inequality
2+ ylI* < flzl* + 2{y, = + y) (2.1.9)

for all z,y € H.

Let « > 0. A mapping A : C' — H is said to be a-inverse strongly-monotone

iff

(x —y, Ar — Ay) > ol Az — Ay|)? (2.1.10)
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for all x,y € C.
A mapping f: H — H is said to be a contraction if there exists a € (0, 1)

such that

1f(2) = FW)ll < allz =yl (2.1.11)

for all z,y € H.

Let B be a mapping of H into 27. The effective domain of B is denoted
by dom(B), that is, dom(B) = {x € H : Bx # ()}. A multi-valued mapping B is
said to be a monotone operator on H iff (x —y,u —v) > 0 for all =,y € dom(DB),
u € Bx and v € By. A monotone operator B on H is said to be maximal iff its
graph is not strictly contained in the graph of any other monotone operator on H.
For a maximal monotone operator B on H and r > 0, we define a single-valued

operator J, = (I +rB)~! : H — dom(B), which is called the resolvent of B for r.

2.2 Lemmas

In this section, we provide some basic concepts, definitions and lemmas

which will be used in the sequel.

Lemma 2.2.1 [13] Let {a,} and {c,} be sequences of nonnegative real numbers

such that
any1 < (1= 6,)a, + b, +cp, Yn>1 (2.2.1)
where {J,,} is a sequence in (0, 1) and {b,} is a real sequence. Assume Z Cp < 00.
n=1

Then the following results hold:
(i) If b, <6,M for some M > 0, then {a,} is a bounded sequence.

(i) If » 4, =oc and limsupb, /s, <0, then lim a, = 0.

n—00
n=1
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Lemma 2.2.2 [13] Let {I',,} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {I',,,} of {I',,} which satisfies

I, < T4 for all ¢ € N. Define the sequence {¢(n)},>n, of integers as follows:
Y(n) =max{k <n: Ty < Ty}, (2.2.2)

where ng € N such that {k < ng: Ty < Ty} # (0. Then, the following hold:

(i) ¥(ng) <P(ng+1) <...and ¢(n) — oo,

(1) Tym) < Tymy+1 and Iy < Tynyr1, Vn > ny.

Lemma 2.2.3 [11] Let H be a Hilbert space and {z,} a sequence in H such that
there exists a nonempty set S C H satisfying:

(i) For every = € 5, nh—>ngo ||z, — Z|| exists.

(ii) Any weak cluster point of {z,} belongs to S.

Then, there exists € S such that {z, } weakly converges to Z.

Lemma 2.2.4 [11] Let {¢,,} C [0,00) and {,} C [0, 00) verify:
@ (b’éo“ — &n < 0p(dn — Pp1) + On,
i) Y 6, < oo,
i) [0.} € [0,6], where 0 € [0,1].
Then {¢,} is a converging sequence and i[qﬁnﬂ — ¢n|+ < o0, where

n=1

[t]+ == max{t,0} (for anyt € R).



CHAPTER III

Main Results

3.1 Strong Convergence Theorem

In this section, we prove some lemmas which will be used in our theorem.

Theorem 3.1.1 Let C' be a nonempty, closed and convex subset of a real Hilbert
space H. Let A be an a-inverse strongly-monotone mapping of H into itself and let
B be a maximal monotone operator on / such that the domain of B is included in
C. Let Jy = (I + AB)'be the resolvent of B for A > 0 and let S be a nonexpansive
mapping of C into itself such that F(S)N(A+ B)"'0# 0. Let f: C — C be a

contraction. Let x¢, 21 € C and let {x,} C C be a sequence generated by

Yn = xn+0n(xn_xn—l)7

Tns1 = Bup+ (1= Ba)S(anf(zn) + (1 — o)y, (Un — MnAyn)) B.1.1)

for all n € N, where {«,} C (0,1),{8.} C (0,1),{\.} C (0,2c) and {6,,} C [0, 0],
where 0 € [0, 1) satisfy
(C1) lim a, =0 and Zan = 00;

n—oo
n=

1
(C2) liminf B,(1 — 3,) > 0;

(C3) 0 <liminf \, <limsup A\, < 2a;

en n—oo
(€4) lim 2, =@, = 0,

n

Then {z,} converges strongly to a point of F'(S) N (A+ B)~'0.
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Proof. Let z = Ppsynatp)-10f(2). Then z = J, (z — \,Az) for all n > 1.

It follows that, by the firm nonexpansive of .J, ,

[ Ix, (U — AnAyn) — 2”2 =

IN

By (C3), we obtain

175, (U = AnAyn) — Ja, (2 — A A2) |12

[(Yn — AnAyn) = (2 = A A2)|?

—(I = Tn) Yo = AnAyn) = (T = Ix,) (2 = X, A2) |12
1(yn — 2) = An( Ay, — A2)||?

Y0 — MAYn — I, (Yn — MAyn) — 2 + N Az
+Jy, (2 — A A2) |2

1(yn — 2) = An(Ayy — A2)|J?

Ny = Aa(Ayn — Az) = Ix, (Y0 — MAya)|®

[yn = 211* = 20 (yn — 2, Ayn — Az) + X2|| Ay, — Az|?
Ny = Aa(Ayn — Az) = Ix, (Y0 — AAya)|®

[yn — 21I* = 20| Ayn — Az|* + N2|| Ay, — Az|?
Ny = A(Ayn — Az) = Ix, (Yo — AAya)|?

1yn = 2II* = A (200 = Ap) | Ay — Az

Ny — Aa(Ayn — A2) — Iy, (Y — MAya) . (3.1.2)

— MAy,) — 2| < lyn — 2. (3.1.3)

On the other hand, since y,, = x,, + 0, (z, — x,_1), it follows that

[y — 2]

= o — 2+ 0n(xn — 201)||



Hence ||/, (yn
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— MAy,) — 2| < ||z — 2| + Onl|en — 21| by (3.1.3) and (3.1.4).

Let wy, = o, f(zn)+ (1 —a,) Iy, (Yn — AnAy,) for all n > 1. Then we obtain

Hwn - ZH =
<
<

So we have

201 — 2]

lom (f () = 2) + (1 = an)Jx, (yn — AnAyn) — 2|
anllf(zn) = F) + anll f(2) = 2l + (1 = )|z — 2]|
+0,(1 — o) ||wn, — 1]

anallzn, = 2|l + anl f(2) = 2] + (1 = on)[|zn — 2|
+0,(1 — o) ||wn, — 1]

(1= an(l = a))[|zn = 2| + anllf(2) = 2] + 0n(1 = an)||lzn = znal]

180 (20 — 2) + (1 = Bn) (Swy, — 2)|

Balltn — 2|l + (1 = Bo) || Sw, — 2|

IN I

IN

Bullen = 2l + (1 = Bu) lwn — 2|

Ballzn — 2|l + (1 = B,)[(1 — an(l — a))||z, — 2|

IN

+an || f(2) = 2| + 0n(1 — an) |20 — 20a]]]
= (1—an(l =51 —a))lz, — 2]

+an(1 = 3,)(1 — a) HﬂlZ)_;ZH * 9025(11_—02))

|zn — 1]l |-
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By Lemma 2.2.1(i), we have {z,} is bounded. We see that

lzner = 2l = [1Ba(zn — 2) + (1 = Ba) (Swy — 2)|I”
= Bullzn — 2l* + (1 = o)l Swy — 2|

—Ba(L = Ba)llzn — Swy?

Ballzn = 2II* + (1 = Ba) wn — 2|

IN

We next estimate the following:

lwn, — 2|

IN

IN

IN

(1 = 2,10~ 2)
(n(F ) = 2) + (1= ) Un, (g = M) = 2) 00— 2)

anl () = F(2) 00 = 2) + an(F() = 2,00 2)

+(1 = ) {(In, (Y = AnAyn) — 2,wn — 2)
nllF(za) = £l 2]

(1= ) v (0 = Mnn) = 2l = 2+ (2) — 2,100 — 2
antlon = 2l = 21 + (1= @) s, (o = MnAya) — 2l — 2]
+ou (f(2) — 2w, — 2)

Snalzn — 2l + Sanalw, — 2|

(1= ), (= Anyn) = 2P + 51 = ) — 2P
+anlf(2) = 200 = 2

1

1
§ana”xn - Z||2 + 5(1 - O‘n)HJ)\n(yn - )‘nAyn) - Z||2

40— a1 = )l — 2| + 0ndf(2) — 2w, — 2).
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It follows that

9 oy a 9 1—a, 9
n - n PN J n - nA n) =
2au,
+m<f(z) — 2, Wp — Z> (316)
We also have, using (2.1.8)
”yn_ZH2 = H(xn_z)+9n($n_$nfl)H2

= |lzn — ZHQ + 20, (Tn — 2,Tn — Tpo1) + einn - xnlez
1 1
= o = 51 + 28 5l =l + Gl —

1
—§H1:n — 2=z, + JCn—1H2} + 02||zp — Tpa||?

= |lan = 2)* + Onlllzn — 2l + 20 — 2o l” = lza-1 — 2]°]
+0121Hxn _"En—IH2

= Hxn - ZH2 + Hn[Hxn - Z||2 - Hxn—l - Z||2] + (92 + Qn)Hxn - $n—1||2

IN

|7 — Z”2 + On[l|zn — Z”2 — |lzn-1 — Z||2] + 20, ||z — xn—1||2(3-1-7)

Combining (3.1.2) and (3.1.7), we get

[ Tx, (Un = AnAyn) = ]2 < e = 2] + Onlllzn — 201> = [l2n-1 — 27
+20, ||, — $n—1||2 — A(200 = \) || Ay — AZ”2

[y — An(Ayn — Az) — Iy, (Yn — AnAy,)[[€3.1.8)
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Combining (3.1.6) and (3.1.8), we obtain

lwn — 2]? < an —ZH2+1_;%
" = 1l-auy(a—1)"" 1—ay(a—1)

—Op |1 — 2||* 4+ 200 ||70 — Zpoi]|® — An(2a — N || Ay, — Az|?

(lzn = 2I* + Onll2n — 2|

_“yn - >\n<Ayn - Az) = I, (yn - AnAyn>||2]

e ) — 2 —2)

e e e N L IRy
| e ¥
1 —10;(:”_‘1) 19 = An(Ayn = A2) = T, (g0 = M Ayn)
+$(2_1)<f(z)—z,wn—z>. (3.1.9)

From (3.1.5) and (3.1.9), we have

1 —a,(1
— 2 < _ 2 1_ n - 2
|Zni1 — 2] < Ballwn —2[]7 + (1= 5,) [ 1>Hxn 2|l
0.(1 — )
= anfa— 0 1 = A = llewcs =210)
20,(1 — ay) (1 — )20 — Ay)
i oe | 2R Y | — — | Ay, — Az|]?
1 —ap(a—1) 1 —ay(a—1)
1—a,
T a1~ (At = A2) = (o = )
200,

H ana = V)~ 20 = 2| = Bl = B)1Swn = ol
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o 20,0-0(-B),
( BT

1 —ay(a—1)
0,(1—06,)(1 —ay,
+ 2 53( —5 e = 21 = s 1P
20,(1 — B,)(1 — ay)
].—OZTL(CL—]_) ||xn_~rn—1||2
)\nl_ n 1— n 2 _>\n
- (11__%38 — (f)") 1y — An(Ays — Az) = I, (Y0 — AaAya)|I?
m(f(z) — 2z, W, — 2)
_ﬁn(l _6n)||8wn_xn”2 (3110)

Set Ty, = ||z, — z||?,¥n > 1. We next consider two cases.
Case 1 : Suppose that there exists a natural number N such that I',,,; < T, for all

n > N. In this case, {I',} is convergent. From (3.1.10) we obtain

_ 20, (1 —a)(1 = f3,) 0n(1 = Bo)(1 — )

P =1 —ana—1) )" T ICan@=1 (T = L)
e A, — P
-l eUZ BB =)y, - e
B — i = 42) = g0 — D)
2020 ) = 2) = Bl = B — a0

1—ay(a—1)
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It follows that

An(l—ap) (1= 5,)2a — \,)

0,(1—3,)(1—a, 20,(1 — 3,)(1 — a,,
S Fn - Pn—l—l + (1 . Oi()ci _ 1)04 )(Fn _Fn—1> + i _ Oéf(zb(— 1>a >Hxn _xn—IH2
g2l () 2, ).

1—ap(a—1)

Also we obtain

(11_—%)((611, : ?)”) ”yn - /\n(Ayn - AZ) - J)xn (yn - /\nAyn)||2

Qn(l _ﬁn)u _an) Qen(l _ﬁn)(l _O‘n) 2
S 1—‘n_rn—l—l_{' l—an(a—l) (Fn_rn—1)+ 1—an(a— 1) ||$n_xn—1||
+—12i[no(4i(; ﬁni) (f(2) — z,w, — 2).

We also have

Bn(1 = Bo)||Sw, — :L‘n||2 < T,—Toii+ 0n.(1 — Bn)(1 — an)

(Fn - 1171—1)

1—ay(a—1)
—i—%(ﬂz) -z, W, — Z).
Since nhjgo Z—onn — 1|l =0, 71113)10 a, =0 and {I',} converges, we have
[ Ayn — Az|| =0,

||yn - )\n(Ayn - AZ) - JAn(yn - )\nAyn)H — 0,

and

||Swn - xn” —0

as n — 0o. We next show that ||Jy, (v — A\vAyn) — ynl| — 0 as n — oo.
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We see that

||J>\n(yn - )‘nAyn) - ynH = HJAn (yn - )\nAyn) - )‘H(Ayn - AZ)

+>\n(Ayn - AZ) - yn”

< Hyn - >‘n<Ayn - Az) — (yn - AnA?Jﬂ)H
+ A\ || Ay, — Az||
— 0, as m — o0.
We also have
”wn - $n|| = ”an(f(xn) - xn) + (1 - O‘n)(JAn(yn - )‘nAyn) - xn)”

< aullf(zn) = @all + [[yn — A(Ayn — Az) — Iy, (Y — AAyn) |
Al Ayn — Az[| + (|20 — yall + anllIx, (Y — AnAyn) — 24|

= anl[f(zn) = @all + lyn — AalAyn — A2) =I5, (Y — MAyy) ||
Al Ayn — Az[| + Onllzn — zp-all + anllIx, (Y — AnAyn) — |

— 0, as mn — o0.

We next show that ||Sz,, — z,,|| — 0 as n — oo. We see that

[Szn — zn|l < [[Sn — Swyl| + [[Swy, — |

< o = wal + [[Swy — 24|

l

0, as n — Q.

Since {x,} is bounded, we can choose a subsequence {x,,} of {x,} which converges

weakly to a point z* € C. Suppose that z* # Sx*.
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Then by Opial’s Condition we obtain

liminf ||z,, — 2] < liminf |z, —Sz*||
1—00 100

liminf ||z, — Sx,, + Sx,, — Sz*|
1—00

IN

liminf ||x,, — Sx,,|| + liminf || Sz,, — Sz*||
1—00 1—00

IN

liminf ||z, — z*||.
1— 00

This is a contradiction. Hence z* € F(5).

From w,, = a, f(z,) + (1 — o)z, (Yn — A\ Ayn), wWe have

Wy — Oénf('rn)

_— = n — AnAyn).
o I (Y Yn)

From J,, = (I + \,B)™", we also have

Wy, — anf(xn)

= (I+MB)™)(Yn — MAya).

1—a,
This gives
Y — )\nAyn e Wy — O-/nf(xn> + /\ann - anf<xn) '
1—oa, 1—oa,
So we obtain
yn Wp, _l' anf(a?n) Wy — anf(a?n)
= - Ay, — ———= B—mm——~.
An Y (1 —ay) 1—a,

Since B is monotone, we have for (p,q) € B

Wy — anf(-rn) Yn Wp, + anf<xn)
— T p 2 Ay, — e > 0.
< 1—a, Py An Yn (1 — ) a) =0
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So we have

(An(wn = an f(zn)) = PAn(l = an), yn(1 — ) — AypAn(l — @) — wy) >0,

(An(wn — anf(zn)) = pPAn(l = ), an f(70) — qAu(1 — ay)) >0,

which implies

</\nwn - p)\n - )\nan(f(xn) - p), Yp — Wy — an<yn - f(xn>>> Z 07

(Awy, — pAn — A (f(xn) — p), = An(1 — ) (Ayn +q)) > 0. (3.1.11)

Since (y, — z*, Ay, — Az*) > a||Ay, — Az*|?, Ay, — Az and y,, — z*
(since ||, — ynl| — 0), we have «| Ay, — Az*||* <0 and thus Az = Az*. From
(3.1.11), we have (z* — p,—Ax* —q) > 0.
Since B is maximal monotone, we have —Az* € Bz*. Hence 0 € (A + B)z* and
thus we have z* € F(S)N (A + B)~10.

We will show that limsup(f(z) — z,w, — z) < 0. Sine {w,} is bounded

n—oo

and ||z, — w,| — 0, there exists a subsequence {w,,} of {w,} such that

limsup(f(z) — z,w, —2z) = lim{f(z) —z,w,, — 2)

= (f(z) = 22" = 2)

< 0.
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We know that

20 1—a)( — Bn) r
Frar < 1—ay(a—1) "
2an(1 — a)( ﬁn) n( - an) 2
+{ 1 —ay(a—1) ] {an(l—a) 170 = Zna
Since hgl—igp {%Hxn — x| + 1T10L<f(z) —zy2w, —z) | <0,
by Lemma 2.2.1(Gi) lim I', = 0. So z,, — z.

Case 2 : Suppose that there exists a subsequence {I',,} of the sequence {I',} such
that I',, < I',,41 for all © € N. In this case, we define ¢ : N — N as in Lemma

2.2.2. Then, by Lemma 2.2.2, we have I',,) < I'y)41. We see that

||m<p(n)+1 — Tp(n) H < (1 - ﬂw(”))”‘sww(n) = Ty(n) ||

— 0, as n — Q.

From (3.1.10) we have

20p(m) (1 = a)(1 = Bym))
1 —aym(a—1)
(1 = Bomy) (1 — )
o 1- Of( y(a—1) T2 (Tt~ Do)
w(n
+29<p(n)<1 — Bom)) (1 — )
1- %(m(a - 1)

r

Fomyer < 1= o(n)

2 o(n) = Zpmy-1II”

_)‘90(”)(1 )( )( - n)) ||Ay (n) — AZHQ
1 aw(n)( 1) s
(1 - ﬂs@(n))( — Qyp(n) )
- Hy n) — Ap(n (Ay n) — AZ)
1 — aymyla—1) e(n) e(n) A p(n)

=Ty Weotn) = Aom) Aoy ||

2
: 10% ai(n)(ff 1>) (=) = 2 wom = 2)

—Bom)(1 = B 1S We(n) — Ty |-
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It follows that

)\g,( )(1 — Qy(n )( ﬁcp n))( )‘so(n)) ||Ay (n) — AZH2
1-— ago(n)(a - 1) :

200,(n) (1 — @) (1 = Bom))

w(n) w(n)+ 1_ Oégp(n)<05 — 1) w(n)
2 w (o= ) (Do) — Dipmy—1)
20, ( B w) (1 = )
— 1—a f)(a —1) ot~ 2t
@w(n
2a¢ n)( ﬁgo(n)
<f(Z) — 2, Wp(n _Z>
1 — gy (o — 1) -
Op(n) (1 = Bon)) (1 — Qpny)
< cp(n) @(n) <p(n) F _ F
< R p— Pty = Lo 1)
20,0 (1 = Bo)) (1 — appny)
+=2 )1 pN f(>2a —1) ) = ot
@e(n
20490 n)( ﬁga(n)
— ) — 2). 3.1.12
+ 1— OQp(n)(Oé _ 1) <f(2) Zy Wep(n) Z) ( )
We also have
ﬁcp(n)(]- - @p(n)) ||Sw<P(n) — Top(n) “2
20_/ (n)(l — a)(l — ﬁ (n))
< Tym) = Tpypr — |1 = — | Ty

1 — aw(n)(oz — 1)
O (1 = Bom)) (1 — tp(n))
(F n -r n—l)

1_05@(”)( _1) »(n) w(n)

205(n) (1 = Bio(n)) (1 — () 2
t—0 %( )(a 0 12 pm) = Tyl

205(n) (1 = By(n))
1 — apmy(a—1)

+

(f(z) = =, Wep(n) — z)
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Oy (1 = Bom)) (1 — o)) r

- n _F n—l)
1—a¢,( )(a—l) e(n) ¢(n)
+ P [T o) — Tyl
1 _Oétp( )(a 1) p(n) e(n)
20, (n
pm) (1 — >)< F(2) = 22w — 7). G.L13)

I — aym(a—1)

We also have

(1 = Bow)) (1 = )
1 — ap(a—1)

1Ytn) = Aptm) (Ao = A2) = Tn_) Wiotn) = Ap(m) Aoy I

205(m) (1 = @)(1 = Byn))

< Ty — Doy — |1 — T
= L) p(n)+1 1— agm(a—1) ¢(n)
Opin) (1 = Bom)) (1 — o))
e e
+ 1_0%(”)(04_1) ( »(n) w(n) 1)
) (1 = Bomy) (1 — ()
- 1-a S(0)(04— 1) Tl = ol
p(n
205(n) (1 = By(n))
1 — O—Qp(n)(a I 1) <f(2) 2y Wep(n) Z>
Opn) (1 = Bom)) (1 — pmm))
< (n) (n) »(n) (F =T n—1)
1—04¢(n)( a—1) e(n) ¢(n)
) (1 = Bomy) (1 — ()
- 1-a ((p)(a —-1) Tl = el
p(n
205(n) (1 = By(n))
- n) — 2)- 3.1.14
1= apg(a—1) V() = 2 et = 2 G119
We know that
Com) = Com-1 = N@pm — 2lI° = zpm-1 — 2|7
= [llzgm) — 2l = l[Tom)—1 = 2llllzom) — 2l + lTp@m)-1 — 2]

< wpm) = Tem) -1 ll1Tomy — 2l + |Tpm)—1 — 2]]]

— 0, as n — 0.
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From (3.1.12), (3.1.13) and (3.1.14), we have

[AYom) = Azl = 0, (Ypm) = Ao (AYpn) = A2) = In ) Weo(n) = M) AYipm) )| — 0
and ||Swy(n) — Tpem)|| — 0. Now repeating the argument of the proof in Case 1,

we obtain limsup(f(z) — 2, wym) — 2) < 0. We note that

n—oo

2001 — @)1 = Bom) G (L = Bow) (1 — )
1= apm(a—1) 7™ = 1 — apmy(a—1)
+2‘9@0(N)(1 — Bom)) (1 — ()
1= agmy(a—1)
20p(n) (1 — By(n))
1-— qu(n)(a — 1)

(Lo — Lopmy-1)

1 o(m) = To(m)-1]I”

(f(2) = 2, Wy(n) — 2).

This gives
Iz (1 —« ) 0 (1 — Oy( ))
Ty < 2R ] 4+ 2 e = T
SD( ) 20{@(’”)(1 . a) o( ) 50( ) a¢(n)<1 — a/) Lp( ) ‘P( )
1
—i—mg(z) — 2, Wp(n) — 2)-

So limsupI'y,y < 0. This means lim ',y = lim |[z40) — z||? = 0.

n—oo

Hence x,, — z. It follows that

”xso(nHl - ZH < ||xg0(n)+1 - x@(n)H + wa(n) - ZH

— 0, as n — oo.
By Lemma 2.2.2, we have I';, < I'(;;)+1. Thus we obtain

Lp = |z~ 2|
< gy — 207

— 0, as n — oo.

Hence I';, — 0 and thus x,, — z. This completes the proof. [
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Remark 3.1.2. It is noted that the condition

lm (Ap — Ani1) =0

n—o0

is removed from Theorem TTT of Takahashi et al.[14].

Remark 3.1.3. [13] We remark here that the conditions (C4) is easily implemented
in numerical computation since the valued of ||x,, — x,_1|| is known before choosing

0,.. Indeed, the parameter 6,, can be chosen such that 0 < 6,, < 6,,, where

. o .
-] min {—len—an\\ , 9} if xp £ Tpoq,
=

0 otherwise,

where {w, } is a positive sequence such that w,, = o(ay,).

3.2 Weak Convergence Theorem

In this section, we prove the weak convergence theorem.

Theorem 3.2.1 Let C' be a nonempty, closed and convex subset of a real Hilbert
space H. Let A be an a-inverse strongly-monotone mapping of H into itself and let
B be a maximal monotone operator on H such that the domain of B is included in
C. Let Jy, = (I+AB)~! be the resolvent of B for A > 0 and let S be a nonexpansive
mapping of C' into itself such that F'(S) N (A+ B)~'0 # 0. Let zo,x; € C and let

{z,} C C be a sequence generated by

Y = Tp + en(xn - xnfl)a

Tnp1 = Bun+ (1= B0)S(In, (Un — AnAyn)) (3.2.1)

for all n € N, where {)\,} C (0,2«),{8,} C (0,1) and {6,} C [0,6], where
6 € [0,1) satisfy
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(C1) liminf f,(1 = B,) > 0;

(C2) 0 < liminf A\, <limsup A\, < 2a;

n—00 n—00

(C3) > Oullan — zo||* < 0.

n=1

Then {z,} converges weakly to a point of F'(S) N (A + B)~10.

Proof. Let z € F(S)N (A + B)7'0 and w, = Jy, (Y — MAy,)Vn > 1.

Then z = J),(z — A\, Az). From Theorem 3.1.1 we have
s =2 < Ballan = 2l + (0 = Bl — =P
—Bn(1 = B) |20 — Swal?, (3.2.2)
[wn =212 =y — 2l = A2 — Xo)[| Ay — A2|)?
_“yn - >‘n<Ayn - Az) — I, (yn - AnA?Jﬂ)HQ (3.2.3)
and
[9n — Z||2 < (T+0p)|lzn — ZH2 + 20,7, — xn—1||2 — Onllzn-1 — Z||2 (3.2.4)
Combining (3.2.4) and (3.2.3), we obtain

[|wn — Z||2 < (1T+0)|lzn — Z||2 + 20,2, — nn—1||2 = Onllzn-1 — Z||2
(20 — M) Ay, — Az||?

Ny — An(Ayn — A2) — Jx, (Y — MnAyn) || (3.2.5)
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Combining (3.2.2) and (3.2.5), we also have

201 = 217 < Ballon — 2l + (1= B)[(1 + ) |0 — 2[1* + 200|120 — 2pa ||
0|1 — 2] = Au(200 = Ao [[ Ay — A2|?
—[[yn — Au(Ayn — A2) — Jx, (Yn — M Ayn) ]
(1 = Ba) |20 — Sw,|?
= Ballen = 2lIP + (1 = Ba) (1 + 0,) |20 — 2|
+20,(1 = Bp) |0 — 0|
—0n(1 = Bo)[[zn1 = 2l = (200 = X)) (1 = B0) ]| Ay — Az]|?
—(1 = B)llyn — Mn(Ayn — A2) = Jx,, (Yn — XnAyn) ||
—Ba(1 = B) |20 — Sw,|®

|20 — ZH2 + O0n(1 = Bo)||lzn — ZH2

IN

1+20,(1 = B)||2n — Zp1||* = 0,(1 = Bo)|xpy — 2|2 (3.2.6)

This shows that

a1 = 2l = llzn = 2lI* < On(1 = Bo)lllzn — 21° = llwn — 2II%]

+20,,(1 — B)||xn — az’n,1|]2.
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By Lemma 2.2.4, we have ||z,, — z||? converges. Thus lim ||z, — z||* exists. So by

(3.2.6) we have

An(20 = M) (1 = Bo)[[Ayn — A2l < 0u(1 = Bo)[llwn — 217 = llwn-1 — 2|7]
+20n(1 = Bo)llwn — 2| + 2w — 2|
~[|zns1 — 2|

— 0, as mn — o0.

We also have

(1 - ﬁn)”yn - >‘n<Ayn - AZ) - J>\n (yn - AnAyn)||2

< (1= Ba)lln — 2)1* = 201 = 2[1%] + 260(1 = Bu) |20 — 20 ||

+||5En - ZH2 - “xn-I-l - ZH2

— 0, as mn — oo0.
More over, we obtain

Bu(1 = Bu)l|lzn — Swn”2 < 0.(1 = Bo)[ll7n — ZH2 — [|Tpn1 — ZH2]
+20,(1 = Bo)l|2n — 5’77%1”2 + |2, — Z||2 — |71 — ZH2

— 0, as n — .

It follows that

[Ayn — Azl = 0, flyn = An(Ayn — Az) = Iy, (40 — AnAyn)|| — 0 and
|z, — Sw,|| — 0. By a similar proof as in Theorem 3.1.1, we can show that if there
exists a subsequence {z,, } of {z,}, such that z,, — z*, then
z* € F(S)N(A+ B)~'0. By Lemma 2.2.3, we conclude that {z,,} weakly converges

to a point in F(S) N (A + B)~'0. We thus complcte the proof. O
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Remark 3.2.2. [11] We remark here that the conditions (C3) is easily implemented
in numerical computation. Indeed, once x,, and x,,_; are given, it is just sufficient

to compute the update x,,,; with 3.2.1 by choosing 6,, such that 0 < 8,, < 0,,, where

. £n .
é . min { TZn—2n_1]2° 9} Zf Tn 7& Tn—1,

0 otherwise,

where {e,} C [0,00) is such that Z&?n < 0.

n=1



CHAPTER 1V

Numerical Examples

In this section, we give some numerical experiments to show the efficiency

and the comparison with other methods.

Example 4.0.3 Solve the following minimization problem:
min || @[3 +(3,5, =1z + 9+ || = [,
z€eR3

where x = (y1,Y2,y3) € R® and the fixed point problem of S : R® — R? defined by
S(x) = (=2 —y1, —4 — Y2, —¥3)-

For each x € R3, we set F'(z) =| z ||3 +(3,5,—1)z + 9 and G(x) =|| = ||.
Put A = VF and B = 0G in Theorem 3.1.1. We can check that F' is convex and
differentiable on R3 with 2-Lipschitz continuous gradient. Moreover, G is convex

and lower semi-continuous but not differentiable on R3. We know that, for » > 0

(I +7B) ! (z) = (maz{| y1 | —r,0}sign(y1), maz{| yo | —r,0}sign(ys),

max{| ys | —r,0}sign(ys)). (4.0.1)

We choose o, = 1oobrys Bn = 5227, Ay = 0.0001 for all n € N and 6 = 0.5. For
each n € N, let w,, = W and define 6, = 6, as in Remark 3.1.3. The stopping

criterion is defined by

E, = ||z — Jr,(I = VF)a,|| + ||z, — Sz,|| < 1072,
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We now study the effect (in terms of convergence and the cpu time) and also

consider different choices of xy and x; as

Choice 1: 2o = (1,2,—1) and z; = (1,5, 1);
Choice 2: x5 = (0,—2,2) and x; = (2,0, —3);
Choice 3: xzy = (—5,4,6) and z; = (3, -5, —9);
Choice 4: x¢y = (1,2,3) and z; = (8,7, 3).

Table 4.1: Using Algorithm 1.1.13 and Algorithm 3.1.1 with different choices of x

and 2

Algorithm 1.1.13  Algorithm 3.1.1

Choice 1  x9=(1,2,—1) No. of Iter. 92 6
x1 = (1,5,1) cpu (Time) 0.045106 0.016301

Choice 2 zp = (0,—2,2) No. of Iter. 92 14
1 = (2,0,-3) cpu (Time) 0.039239 0.014759

Choice 3  zp = (—5,4,6) No. of Iter. 92 14
x1 = (3,—5,—-9) cpu (Time) 0.064943 0.010813

Choice 4  zo=(1,2,3) No. of Iter. 92 14
ry=(8,7,3)  cpu (Time) 0.066736 0.047984

The error plotting of Algorithm 1.1.13 and Algorithm 3.1.1 for each choice

is shown in Figure 1-4, respectively.



Figure 1: Comparison of Algorithrn 1.1.13 and 3.1.1 for Choice 1
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Figure 3: Comparison of Algorithrn 1.1.13 and Algarithim 3.1.1 for Choice 3
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Weak and strong convergence theorems for the
inclusion problem and the fixed point problem of
nonexpansive mappings

Jidapa Srimoon, Nattawut Pholasa, Prasit Cholamjiak and Thadsaneewan Wienglor *
School of Science, University of Phayao, Phayao 56000, Thailand

Abstract

In this work, we study the inclusion problem of the sum of two monotone operators and the
fixed point problem of nonexpansive mappings in Hilbert spaces. We prove the weak and strong
convergence theorems under some weakened conditions. Some numerical experiments are also

given to support our main theorem.

Keywords:
Strong convergence; Weak convergence; Fixed point; Nonexpansive mappings; Maximal monotone operator;

Inverse strongly-monotone mapping; Hilbert space.

1 Introduction

Let H be a real Hilbert space. We study the following inclusion problem: find £ € H such that
0 € Az + Bz (1.1)

where A : H — H is an operator and B : H — 2 is a set-valued operator.

If A:= VF and B := G, where VF is the gradient of F' and G is the subdifferential of G
which is defined by

0G(x)={z€H:(y—u,2)+G(z) < Gly),Yy € H}. (1.2)
Then problem (1.1) becomes the following minimization problem:

géi}{lF(x) + G(z) (1.3)

*Corresponding author.
Email addresses: prasitch2008@yahoo.com (P. Cholamjiak), nattawut-math@hotmail.com (N. Pholasa),
breed.jidapa@gmail.com (J. Srimoon), bee.ka.golf@gmail.com (T. Winglor)
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To solve the inclusion problem via fixed point theory, let us define, for » > 0, the mapping
T, : H— H as follows:

T, = (I +7B)" (I —rA). (1.4)

It is known that solutions of the inclusion problem involving A and B can be characterized via the

fixed point equation:

Tix=z & z=I+rB) Yz —rAz)
& z—rAz € x+rBx
& 0€ Ax + Bru,

which suggests the following iteration process: r; € H and
Tpp1 = ([ +r,B) Yaxp — rpAzy),n > 1, (1.5)

where {r,} C (0,00).

Xu [15] and Kamimura-Takahashi [5] introduced the following inexact iteration process: u,x; €
H and

Tpt1 = QU + (1 - an)Jrnxn +en,n>1, (16)

where {a,} C (0,1),{r,} C (0,0),{e,} C H and J,, = (I + r,B)~!. It was proved the strong
convergence under some mild conditions. This scheme was also investigated subsequently by [1, 2, 9]
with different conditions. In [16], Yao-Noor proposed the generalized version of the scheme (1.6)

as follows: u,x1 € H and
Tnt1 = 4 Bpxy + (1 — By — )y, Tn + €n,n > 1, (1.7)

where {a,}, {8.} C (0,1) with 0 < ay, + B, < 1,{rn} C (0,00) and {e,} C H. The strong
convergence is discussed with some suitable conditions. Recently, Wang-Cui [14] also studied the
contraction-proximal point algorithm (1.7) by the relaxed conditions on parameters: «, — 0,

oo [e.e]
Zan = 00, limsup 5, < 1,liminfr, > 0, and either Z llen]| < oo or ”Z—"” — 0.
n—oo n

n=1 oo n=1

Takahashi et al. [13] introduced the following Halpern-type iteration process: w,x; € H and
Tnt1 = apu+ (1 — an)Jdy, (T — 1 Axy),n > 1, (1.8)

where {ay,} C (0,1),{r,} C (0,00), A is an a-inverse strongly monotone operator on H and B is a
maximal monotone operator on H. They proved that {z,} defined by (1.8) strongly converges to

zeroes of A + B if the following conditions hold:

(o)
(7) lim oy, =0, Zan = 00;
n—oo
n=1
oo
(ZZ) Z |an+1 - an| < o0;

n=1
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(1i1) i [rpg1 — | < o0
n=1
(v) 0 <a<r, <2a
Takahashi et al. [13] also studied the following iterative scheme: u,x; € H and
Tng1 = Onn + (1 — Bn)(anu + (1 — an)Jp, (2n, — rndzy)),n > 1, (1.9)

where {a,},{8.} € (0,1) and {r,} C (0,00). They proved that {z,} defined by (1.9) strongly

converges to zeroes of A+ B if the following conditions hold:

oo
(¢) lim oy, =0, E Qy, = 00;
n—oo
n=1

(1) 0<b<B,<c<I;

(t9i) lim |rpq1 —rn| =05
n—oo

(v) 0<a<r, <2aq.

There have been, in the literature, many methods constructed to solve the inclusion problem

for maximal monotone operators in Hilbert or Banach spaces; see, for examples, in [3, 6, 7]
Let C be a nonempty, closed and convex subset in a Hilbert space H and let T" be a nonexpansive
mapping of C' into itself, that is,
[Tz —Ty| < |lz -yl (1.10)

for all z,y € C. We denote by F(T') the set of fixed points of T'.
The iteration procedure of Mann’s type for approximating fixed points of a nonexpansive map-
ping T is the following: 1 € C' and

Tnt1 = nZp + (1 —ap)Tx,, n>1 (1.11)

where {a,,} is a sequence in [0, 1].

On the other hand, the iteration procedure of Halpern’s type is the following: 21 =z € C and
Tyl = anx + (1 — )Ty, n>1. (1.12)

where {a,} is a sequence in [0, 1].
Recently, Thakahashi et al.[11] proved the following theorem for solving the in inclusion problem

and the fixed point problem of nonexpansive mappings.

Theorem TTT [11] Let C be a closed and convex subset of a real Hilbert space H. Let A be
an a-inverse strongly-monotone mapping of C into H and let B be a maximal monotone operator

on H such that the domain of B is included in C. Let Jy = (I + AB)~! be the resolvent of B for
A > 0 and let T' be a nonexpansive mapping of C' into itself such that F(T) N (A + B)~10 # 0 Let
x1 =x € C and let {x,} C C be a sequence generated by

Tpp1 = Pnn + (1= o) T(omz + (1 = an) Iy, (2n — AnAzn)) (1.13)

for all n € N, where {\,} C (0,2a),{8,} C (0,1) and {a,,} C (0, 1) satisfy
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O<a<, <b<2a, O<e<p,<d<1,

o
lim (A, — A1) =0, lim «,, = 0 and Z oy, = 00.
n—oo n—oo n:1

Then {x,} converges strongly to a point of F(T) N (A + B)~10.

In this paper, motivated by Takahashi et al.[12] and Halpern,[4] we introduce an iteration of
finding a common point of the set of fixed points of nonexpansive mappings and the set of inclu-
sion problems for inverse strongly-monotone mappings and maximal monotone operators. We then
prove strong and weak convergence theorems under suitable conditions. Finally, we provide some

numerical examples to support our iterative methods.

2 Preliminaries

In this section, we provide some basic concepts, definitions and lemmas which will be used in
the sequel. Let H be a real Hilbert space with inner product (-, ) and norm || - |. When z, is a
sequence in H, x,, — x implies that {z,} converges weakly to x and x,, — = means the strong

convergence. In a real Hilbert space, we have
Az 4 (1= Nyl = Mzl + (1 = Vgl =21 =Nz -yl (2.1)

for all z,y € H and A € R.

We know the following Opial’s condition:
liminf ||z, — || < liminf ||z, — v|| (2.2)
n—oo n—oo

if ,, = v and u # v.

Let C' be a nonempty, closed and convex subset of a Hilbert space H. The nearest point
projection of H onto C' is denoted by P, that is, ||z — Pox| < ||z — y|| for all x € H and y € C.
The operator Pg is called the metric projection of H onto C'. We know that the metric projection

P is firmly nonexpansive, for all x,y € H
|Pox — Poyl® < (Pex — Poy,x — y). (2.3)
or equivalently

IPez — Peyl” < |z =yl = (I = Po)e — (I = Po)yl®. (2.4)

It is well known that Pc is characterized by the inequality, for all x € H and y € C
(x — Pox,y — Pox) <0. (2.5)
In a real Hilbert space H, we have the following equality:

1 1 1
(z,y) = §||93H2+§||y||2— §l\$—y|!2- (2.6)
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and the subdifferential inequality
lz +yl? < [lel® + 2{y, = +y) (2.7)
for all x,y € H.
Let o > 0. A mapping A : C — H is said to be a-inverse strongly-monotone iff
(& — y, Az — Ay) > af| Az — Ay? (2.8)
for all z,y € C.
A mapping f: H — H is said to be a contraction if there exists a € (0,1) such that
1f (@) = fW)l < allz =y (2.9)

for all z,y € H.

Let B be a mapping of H into 2¥. The effective domain of B is denoted by dom(B), that is,
dom(B) = {x € H : Bx # (}. A multi-valued mapping B is said to be a monotone operator on
H iff (v —y,u—v) >0 for all z,y € dom(B), u € Bx and v € By. A monotone operator B on
H is said to be maximal iff its graph is not strictly contained in the graph of any other monotone
operator on H. For a maximal monotone operator B on H and r > 0, we define a single-valued
operator J. = (I +rB)~! : H — dom(B), which is called the resolvent of B for r.

Lemma 2.1. [10] Let {a,} and {c,} be sequences of nonnegative real numbers such that

ant1 < (1 —0p)an +bp+cp, VR >1 (2.10)
o0

where {0n} is a sequence in (0,1) and {b,} is a real sequence. Assume ch < 00. Then the
n=1

following results hold:
(i) If by, < 0, M for some M > 0, then {ay,} is a bounded sequence.
(ii) Iden = o0 and limsup b, /6, <0, then lim a, = 0.

n—00
n=1

Lemma 2.2. [10] Let {I'y,} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {I'y,;} of {I',} which satisfies 'y, < Ty, 41 for alli € N. Define

the sequence {1(n)}n>n, of integers as follows:
Y(n) =max{k <n: Tk <Tri1}, (2.11)

where ng € N such that {k <ng: Ty <Tri1} # 0. Then, the following hold:

(i) ¥(no) <¥(no+1) < ... and ¢(n) — oo,
(i) Ty < Tymy+1 and T < Ty, V0> ng.

Lemma 2.3. [8] Let H be a Hilbert space and {x,} a sequence in H such that there exists a
nonempty set S C H satisfying:
(i) For every z € S, lim |z, — Z| ewists.
n—oo

(ii) Any weak cluster point of {xyn} belongs to S.

Then, there exists & € S such that {x,} weakly converges to Z.
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Lemma 2.4. [§] Let {¢,} C [0,00) and {6,} C [0,00) verify:
(Z) (bgg-l - (bn < 0n(¢n - ¢n—1) -+ 6n7
(ii) Y dn < oo,
(i) (B0} C [0,6], where 0 € [0,1].

o0
Then {¢n} is a converging sequence and Z[(Z)n+1 — ¢n)+ < 00, where [t]+ := max{t,0}

n=1

(for any t € R).

3 Strong Convergence Theorem

In this section, we are now ready to prove the strong convergence theorem in Hilbert spaces.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
A be an a-inverse strongly-monotone mapping of H into itself and let B be a maximal monotone
operator on H such that the domain of B is included in C. Let Jy = (I + B)~! be the resolvent of
B for A > 0 and let S be a nonexpansive mapping of C into itself such that F(S)N(A+B)~10 # 0.
Let f : C — C be a contraction. Let xg,x1 € C and let {xz,} C C be a sequence generated by

Yn = $n+0n(xn*xnfl)a

Tpt1 = Boxn + (1= Bn)S(anf(wn) + (1 — an)Jx, (Yn — AnAyn)) (3.1)

for all n € N, where {a,} C (0,1),{Bn} C (0,1),{\n} C (0,2c0) and {6,,} C [0,0], where § € [0,1)
satisfy

(C1) lim oy, =0 and Zan = o0;
n=1

(C2) liminf §,(1 — 8,) > 0;
(C3) 0 < liminf A, <limsup \, < 2q;

n—00 n—00
. O
(C4) lim —||zp — zp—1|| = 0.
n—o0 (v

Then {z,} converges strongly to a point of F(S)N (A+ B)~10.
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Proof. Let 2 = Pp(g)nat+p)-10f(2). Then 2z = J) (2 — A\, Az) for all n > 1. It follows that, by the

firm nonexpansive of Jy, ,

150 W = AnAyn) = 217 = [[n, (Y0 — AnAya) = Ja, (2 = ApA2)|?
< Ny — AnAyn) — (2 — ApA2)|?
~[1(I = Ix) (0 = AnAyn) — (L = Iz, ) (2 = AnAz)|?
= [y = 2) = Aa(Ayn — A2)|?
~Nlyn = MAyn — Ix, (Un — AAyn) — 2 + A Az + Jy, (2 — A A2)]]?
= [y = 2) = M(Ayn — A2)|?
—llyn — An(Ayn — Az) — Jx, (Yn — AnAyn)|?
= lyn — 21> — 2Xn(yn — 2, Ayn — A2) + X2|| Ay, — Az|?
—llyn = An(Ayn — A2) = Jx, (yn — AnAya) |1?
< lyn = 2I1P = 200l Ay, — Az[” + X7 || Ay, — Az|?

—[lyn — An(Ayn — Az) — Jkn(yn - )‘nAyn)HQ
= Iy — 211> = A2 — An) [ Ay, — Az|?
_Hyn — A (Ayn — Az) — I, (yn - )‘nAyn)H2' (3.2)

By (C3), we obtain
[Ixn (Yn = AnAyn) — 2| < llyn — |- (3.3)
On the other hand, since y,, = =, + 0, (xy, — x5—1), it follows that

lyn — 2l = |lon — 2+ On(Tn — 201l

< o = 2| + Onllzn — 2ol (3.4)

Hence ||Jx, (Yn — MAyn) — 2| < ||zn — 2| + Onl|zn — zn—1|| by (3.3) and (3.4).
Let wy, = anf(zn) + (1 — an) I, (Yn — AnAyy) for all n > 1. Then we obtain

lwn =2l = llan(f(zn) = 2) + (1 = an)Jx, (Yn = AnAyn) — ||
< anl[f(zn) = )+ anllf(2) = 2l + (1 = an)llzn — 2]|
(1 — an)l[zn — 2n
< anallen = 2l + o[ f(2) = 2l + (1 = an)lzn — 2]

+9n(1 - an)”l'n - xn—l”
= (1—an(l=a)llon — 2l + anllf(2) = 2]| + On(1 — on)[|2n — Tn—1]]-
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So we have
[Znt1 =2l = [Bn(zn — 2) + (1 = Bn)(Swn — 2)||
< Ballzn — 2l + (1 = Bp)||Swy — 2|
< Ballen — 2l + (1 = Ba)lwn — 2|
< Ballzn — 2+ (1 = Bu)[(1 — an(l — a))llzn — 2| + anl| f(2) — 2|
+0n(1 — an)||Tn — Tn-1]
= (1—an(l—=5)1—a))llz, — 2
1f(z) =2l | On(1—an)
+on (1 — Bp)(1 —a) o on(l = a) |zn — zp—1]||.
By Lemma 2.1(i), we have {z,} is bounded. We see that
|Zn+1 — ZHQ = |[|Bn(n — 2) + (1 = Bn)(Swn — z)HQ
= Bullzn — ZH2 + (1 = Bn)||Swn — ZH2 — Bn(1 = Bn)l|zn — Swn”2
< Ballan = 2)1* + (1= Bu)llwn — 21 = Bu(1 = Ba)||Swn — za*. (3.5)

We next estimate the following:

lw, — 2| = (wn—z,wy, — 2)
= {an(f(zn) —2) + (1 = an)(Ir, (Yn — AnAyn) — 2), wp — 2)
= on(f(zn) = f(2),wn — 2) + an(f(2) — z,wn — 2)
+(1 = an) (I, (Yn — AnAyn) — 2,0, — 2)

< anllf(@n) — f(2)|[lwn — 2|
+(1 = an)[[Ix, (Yn — AnAyn) — 2lll[wn — 2[| + an(f(2) — 2, wp — 2)
< anal|zn — 2|[|wn — 2| + (1 = an) |5, (Yn — AnAyn) — 2| |wn — 2|
+an(f(2) — z,w, — 2)
1 1 1
< omallzn — 2| + Somallwn — 2" + 51— an) [T, (Yn = Andyn) — 2[/*
1
+5 (1 = an)ljwn — 2| + an(f(2) — z,wn — 2)
1 1
= 50‘71@”9571 - Z”2 + 5(1 - O‘n)HJ)m(yn — M Ayn) — Z”2
1
+§(1 — an(1 —a))||lwy — 2|1* + an(f(2) — 2z, w, — 2).
It follows that
n — < ———|%n — —J n— M AYn) —
=1 < el = 2P T s (= Ancd) =
2a,
—i-m(f(z) — 2, Wp — Z>. (36)
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We also have, using (2.6)

lyn = 217 = l(@n = 2) + On(zn — z-1)|I?

= ”xn - ZH2 + 29n<xn —Z2,Tn — xn—1> + 9721H$n - xn—lHQ
1 1 1
= |l — Z||2 + 26, 5”5% - z||2 + 5”3311 - 331%1”2 - 5”3371 —Z = Tp+ xnfl”Q

+9721||5Un - $n71||2
= lzn — 2l* + Balllzn — 2l* + e — 2nal® = lzn-1 — 2||°]
+0721||‘T7’b - xn—IHZ
= len =212+ Oulllen — 201 = lzn1 — 212 + (67 + On)ll2n — 2]

< N = 2+ Oallzn — 201 = llen-1 = 2] + 20n 20 — 0. (3.7)
Combining (3.2) and (3.7), we get

[0 (Un = AnAyn) — 217 < lan — 212+ Onlllan — 21 = llzn-1 — 2lI°] + 20, )|l2n — 20 )?
(20 — A\p) | Ay, — AzH2
~lyn = An(Ayn — A2) = Jx, (Y — AnAyn) |I°- (3.8)

Combining (3.6) and (3.8), we obtain

9 ona 9 1—-a,
— < - — -

—Onllzn-—1 — Z||2 + 20n ||z — 331%1”2 = A2 = M) [|Ayn — AZH2
—llyn — An(Ayp — Az) — Iy, (yn — /\nAyn)HZ]

[llzn = 21% + Onllzn — 2|

+1_0?:Y(;LL_D<f(Z) — 2, Wn = 2)
_ iZZHuxn —z|* + m[”xn — 2|* = l|zn-1 — 2]
—%Hyn = Mn(Ayn = Az) = I, (g = AnAya) I’
20,

+m<f(z) — Z,Wp — 2). (3.9)
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From (3.5) and (3.9), we have
fenis =P < Bullen = 21+ (1= )| ;o= D, - 2|2
e R B LR
- C o) gy, — el
s i = Ml = A2) = T (= M) P
) — s = 3] = = B, — 2P
- (1o Zmon0os,
ol Bl 00) 1, 2 — s — o)
T e e
OO BB =) ay, - sl
IO ) (i = 42) = Ty (0 = DA
+m<f(z)—z,wn—z> — Bn(1 = B)||Swn — x| (3.10)

Set Ty, = ||z, — z||%,¥n > 1. We next consider two cases.

Case 1 : Suppose that there exists a natural number N such that I',41 < T, for all n > N.

In this case, {I',,} is convergent. From (3.10) we obtain

I R Ervr e = e UL
L 261 = )1 = ) An(1 = an)(1 = B) (2 — An)
1—ap(a—1) 1 —ap(a—1)
OB ) A = 49) = o= A P
20, (1 — Bp)
T ana—1)

|z — 21l ~ 1Ay — Az||?

(f(2) = 2,wn — 2) = Ba(1 = Bn) || Swn — znl|*.
It follows that

An(1—an)(1 = 6r)(2a — An)

1— a (a—l) ||Ayn_AZ||2
0,(1 —06,)(1—ay 20, (1 — 6,)(1 — ay
Srn_rn+1+ (1—§n()c§,—1)a )(Fn_rn—l)_'_ i—oi(l(— 1)a )Hxn_xn—l”2
L 2= B iy o — 2,

1—ap(a—1)
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Also we obtain
(1= 8n)(1 — an) 2
n - \n A n - A - n - nA n
— [yn — An(Ay z) = In, (Yn — A Ayn)||
O (1 — Br) (1 — ) 20, (1 — Bn)(1 — an) 2
<Fn_rn Fn_rn— n — 4n—
- 1t 1—ap(a—1) ( ks 1—ap(a—1) lzn =zl
200,(1 — Bp)
+m<f(z) — 2, Wy, — 2).
We also have
0,(1—Bn)(1 — ap)
1— —z,l? < T,,—-T r,—TI,_
ﬁn( ﬁn)”swn xn” >~ n n+1 + 1_ an(a — 1) ( n n 1)
20, (1 — Bn)(1 — ap) 9
* 1—ap(a—1) l#n = 2nall
200,(1 — )
) . Oy .
Since lim —||zy, —zp—1]] =0, lim «, =0 and {I',} converges, we have
n—00 Uy, n—oo
|Ayn — Az|| — 0,
lYn — An(Ayn — Az) — Jkn(yn — AAyn)|| — 0,
and
|Swy, — zp|| — 0
as n — oo. We next show that ||Jy, (yn — AnAyn) — yn|| — 0 as n — co. We see that
150 Un = M AYn) = Ynll = [Ix0, (Un — MAyn) — An(Ayn — A2) + Mi(Ayn — A2) — yn|
< lyn — An(Ayn — Az) — J)\n(yn — M Ayn) || + Al Ayn — Az|]
— 0, as n — oo.
We also have
|wn —xp|l = llan(f(2n) —20) + (1 — O‘n)(JAn (Yn — AnAyn) — )|
< anlf(@n) = zull + lyn — An(Ayn — Az) — Jkn(yn — Ay ||
+Anl[Ayn — Az[| + |20 — ynll + anllIn, (Yn — AnAyn) — 24|
= O‘an(xn) - wnH + Hyn - )\n(Ayn - Az) - J)\n(yn - AnAyn)H
Al Ayn — Az|| + Onllzn — 1| + anllIn, (Yn — A Ayn) — 24|
— 0, as mn — oo.

We next show that ||Sz, — z,| — 0 as n — co. We see that

[Szy, —xp| < |[Szr — Swall + [|Swn — 24|

<o — wall + [|Swn — 24|

!

0, as mn — oo.

11
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Since {xy} is bounded, we can choose a subsequence {z,,} of {z,} which converges weakly to a

point * € C. Suppose that * # Sx*. Then by Opial’s Condition we obtain

liminf ||z,, — z*|| < liminf |z, —Sz*|
1—00 71— 00

liminf ||z, — Szp, + Szy, — Sz™||

Z—>

hmmf |Xn, — San, || + liminf || Sz, — Sz*||
11— 71— 00

IA

IN

liminf ||x,, —z*].

71— 00

This is a contradiction. Hence z* € F(S). From w, = an f(xy) + (1 — an) I, (Yn — MAyn),

we have

Wy — Oénf(xn)
1—qo,

= (yn - AnAyn)'

From Jy, = (I + A\, B)™1, we also have

W = anf (@) 3 B (g — AnApn).
1-— (079
This gives
i — Ay, € U onflEn) |y pn = anflza)
1—op 1—an
So we obtain
In gy, Ontonfl@a) o pn = anflzn)

Since B is monotone, we have for (p,q) € B

<wn - anf(xn) —p Yn Ayn _ Wn + anf(xn) - q>

An An(1— o)

, > 0.
1—oa, An -

So we have

<)‘n(wn _anf(ﬁn)) _p)‘n(l _an)7 yn(l _an) _Ayn)\n(l _an) _wn+anf(xn) _q)‘n(l _an)> >0,
which implies

(Anwn — pAn — A (f(Tn) = P)s Yn — Wn — @n(Yn — f(70)) — An(1 — an)(Ayn +¢q)) >0 (3.11)

Since (y, — x*, Ay, — Ax*) > o||Ay, — Az*||?, Ay, — Az and y,, — z*(since ||z, — yn|| — 0),
we have af Ay, — Az*||? <0 and thus Az = Az*. From (3.11), we have (z* — p, —Ax* — ¢) > 0.
Since B is maximal monotone, we have —Az* € Bz*. Hence 0 € (A + B)z* and thus we have
r* € F(S)N(A+ B)~to.

We will show that limsup(f(z) — z,w, — z) < 0. Sine {wy} is bounded and ||z, — wy,|| — 0,
there exists a subsequenrz:gofwm} of {wy,} such that

limsup(f(z) —z,wn, —2) = lim (f(z) — 2z, wy, — 2)

n—oo i—00

= (f(z) —z,2"—2) < 0.
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We know that
200, (1 — a)(1 = Bp)
< —
Poni < [1 1—ap(a—1) L
200, (1 —a)(1 = Bn) | [On(1 — o) 9 1
+[ I —ana—1) || an(i—a) 17 =il + =gy @) = 2w =2)
Since lim MH - 12 ! (f(z) — —2) | < 0, by Lemma 2.1(ii)
ce lim sup an(l—a) Ty — Tp—1 T f(2) = zwn — 2 < 0, by Lemma 2.
lim I', = 0.Sox, — 2.

n—oo

Case 2 : Suppose that there exists a subsequence {I',,} of the sequence {I',} such that
Iy, <Ty,41 for all ¢ € N. In this case, we define ¢ : N — N as in Lemma 2.2. Then, by Lemma
2.2, we have Iy, < T'y)41- We see that

ngo(n - x(p(n)H < (1- @p(n))”sww(n) - ch(n)”

— 0, as n — oo.

From (3.10) we have
2a n)(l_a)(l_ﬁcp(n)) T + ( ﬁ(p(n )1 -« o(n ))
l—«o (n)(a — 1) () 1-— a¢(n)(a - 1)
20p(n) (1 — Bio(m) ) (L — Up(m))
1— aw(n)(a — 1)
A n(l_a n) 1_6 n)(za_)‘ n)
_De(n) Si(_) 80(_) »(n) ||Aycp(n) —AZ”2
oz@(n)(a 1)
_ (1 - ﬁgp(n))(l - O5(,0(71))
l—« (n)(a — 1)
+2a n) (1 = Byomn))
1-— Oésp(n) (a — 1)

(r

Pomyrr < p(n) ~ Lpm)—1)

||$ - xcp(n)—lHQ

o(n)

)2

1Y) = Ap(m) (AYip(n) = A2) = Ix ) (Yo(n) = Ap(m) AYip(m)

(F(2) = 2,wy(m) — 2) = Bon) (L = B 15We(m) — Ty 1.
It follows that

>‘<p( )(1 — Gy )(1 /84,0 )( a— )‘Lp(n))
1 — a¢(n)(a — 1)

 2ap0)(1 = ) (1 = Byw))

||Ay<p(n) - ‘42”2

< Tum) = Lpmyt1 — I~ apm(a—1) Lo(n)
w(n)g - aﬁ; )()0(41_ 1?%)) (Com) = Lpmy-1) + 2t 1( - ai:(:(;(—_l) = I66e) = o1l
e RN
< o (11_ 5;:)();1_1?@(@) (Comy = Lom-1) + 2990(71)1(1_ ifﬁ?@i(l_n%w I0tr) = oty

20(n) (1 = Byp(n))

[ agom(a—1) (f(2) = z,wy(n) — 2)- (3.12)
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We also have
By (1 = B 15wy — T I

- 2a<p(n)(1 - Oé)(l - /Bnp(n))

S r n) r n - r n
o(n) w(n)+1 1_ Oé@(n)(a —1) w(n)
ga(n)( ﬁgo )(1 - a¢(n)) . 29 ( Bg@ )( acp(n)) _ 2
- tpm(@ 1) Tom) = Tom-1) + [—a, (n)(a Y 1Zp(n) = Zpm)—1ll

+2%<n>(1 — Bon)
1- a¢(n)(a - 1)

<f(z) — 2, Wp(n) — z>

N 205 (n) (1 = Bon)) (1 = ap(n))
L — (@ = 1)

<f(22) 2 We(n) — Z>- (313)

IN

o) — Lpm)—1)

Op(n) (1 = Bpm)) (1 — () T
1 — Oécp(n) (a — 1)

200p(n) (1 = Bypn))
1 — aumy(a—1)

chp(n) - :L'go(n)—1||2

We also have

(1= Bom)) (1 = aymy)
1-— a¢(n)(a — 1)

19y = Ao (AWp(m) = AZ) = In gy Wiplm) = M) AYipi)) I

2ag&(n)(1 - Oé)(l - /Bcp(n))

r
I — aymy(a—1)

< Tom) = Tem)+1 — ¢(n)

<p(n ( /390 n))( a@(")) T
2, (1—6n)(— ) 20 (1~ Ao
+ f(>éa —1) g ) = iyl + T %(n)(a 2y V) =2t =)

Oo( (1—@0@)(1—04 )
< Loty — Loty
T aym(a—1) o(n) = Lip(m)-1)

20,5(n) (1 = Bp(n)) (1 — ()
1 — aymy(a—1)

+2%(n>(1 — Bo)
1 — Ct(p(n) (a — 1)

o(n) ~ Lpm)—1)

thp(n - %(n)lez

<f(2) = 2, Wyp(n) — Z) (314)

We know that

1_‘<,o(n) - F<,o(n)—1 ngo(n) - Z||2 ngo(n ZH2

lzomy = 2l = |2pm)—1 = 2l12pm) — 2l + [ 2pm)—1 = 2]]

IN

1Zo(n) = Zem)=1 11Ty = 21l + |7 om)—1 — 2]]]

!

0, as mn — Q.

From (3.12), (3.13) and (3.14), we have

HAycp(n) - AZH — 0, Hycp(n) - )‘cp(n) (Aycp(n) - Az) - J)\g,(n) (ycp(n) - )‘cp(n)Aygo(n))H —0
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and [[Swy(n) — Tyl — 0. Now repeating the argument of the proof in Case 1, we obtain
limsup(f(z) — 2, wy(n) — 2) < 0. We note that

n—oo

200p(n) (1 — a)(1 = Bp(m)) Opn) (1 = Bp(n)) (1 — ()

Loy < (T oty — Loim)—
1= agm)(a—1) () 1— agm(a—1) o(n) ~ Lp(m)-1)
20,0y (1 = B (1 = apiny)
() o(n) o(n) - ,

i 1— o (a—1) 12 6(n) = To(m) -1
20(n) (1 = Bio(n))

+ £ f zZ)— Z7w n) Z).
T—apla—1) 720 =)

This gives
QO(n) QO(TL) QO(TL) QO(TL) )
L) 2000 (1~ a) [Con) — Lop(ny-1] 2o —a) 1Z () = To(m)—1
1
+ () = 5 ) — 2).

. . . T 2
So 117rln_>sol<1)p Loy < 0. This means nh_)rrolo Comy = nh—%lo |Zon) — 2|I7 = 0. Hence z,, — 2.

It follows that

chp(n)-f—l —z|| < ngo(n)—&-l - xcp(n)” + Hmcp(n) —z||

— 0, as mn — o0.
By Lemma 2.2, we have I';, <T'j,)41. Thus we obtain

Ln = [lzn— Z||2

< ngo(n)-‘rl - ZH2

l

0, as mn — 0.
Hence I';, — 0 and thus z,, — z. This completes the proof. Ul

Remark 3.2. It is noted that the condition

m (Ap — Aps1) =0

n—oo

is removed from Theorem TTT of Takahashi et al.[11].

Remark 3.3. [10] We remark here that the conditions (C4) is easily implemented in numerical
computation since the valued of ||z, — xn—1]| is known before choosing 0,,. Indeed, the parameter 6,,

can be chosen such that 0 < 6, < 0,,, where

5n={ min { p—r 0} if @ # 2,

0 otherwise,

where {wy} is a positive sequence such that w, = o(ay,).
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4 Weak Convergence Theorem

In this section, we prove the weak convergence theorem.

Theorem 4.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
A be an a-inverse strongly-monotone mapping of H into itself and let B be a maximal monotone
operator on H such that the domain of B is included in C. Let Jy = (I + B)~! be the resolvent of
B for A\ > 0 and let S be a nonexpansive mapping of C into itself such that F(S)N(A+B)~10 # 0.
Let xg,x1 € C and let {x,} C C be a sequence generated by

Yn = xn'i_en(xn_xn—l)v

Tn+l = By + (1 - BH)S(JAn (yn - )‘nAyn)) (41)

for all n € N, where {\,} C (0,2a),{8,} C (0,1) and {0,} C [0,0], where 8 € [0, 1) satisfy
(C1) liminf B,(1 — B,) > 0;

(C2) 0 < liminf A\, <limsup A, < 2q;
n—oo

n—oo

(C3) ) Onllan — zpal* < oo
n=1

Then {x,} converges weakly to a point of F(S) N (A + B)~10.

Proof. Let z € F(S)N(A+ B)710 and w, = Jy, (Yyn — AnAyn)¥n > 1. Then z = Jy, (2 — Ay Az).

From Theorem 3.1 we have

and

| Tns1 — Z||2 < Bullzn — Z||2 + (1= Bn)llwn — ZH2 — Bn(1 = Bn)l|zn — Swn||2, (4.2)
lwn = 2% = llyn — 211> = An(20 = Xn) | Ayn — Az

~yn — A (Ayn — Az) — I, (Yo — )\nAyn)Hz (4.3)

lyn — ZHQ < (1+0n)[lzn — ZH2 + 20 ||z — mn71||2 — Onllzn-—1 — Z||2 (4.4)

Combining (4.4) and (4.3), we obtain

||wn*2||2 < (1+0n)|‘$n*2‘|2+20n”$n*$n71H2*9n||5'3n71*2||2

(20 — A\ || Ay, — Az||2 — ||y — A (Ayn, — Az) — Iy, (Yn — )\nAyn)||2.(4.5)
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Combining (4.2) and (4.5), we also have

21— 21> < Bullzn — 2l1° + (1 = Bu)[(1 + 6n)ll2n — 21|° + 200 |20 — 201 |

—On||zn—1 — 2l = A (200 = An) [ Ay — Az|

~lyn = An(Ayn — A2) — Ix, (Yn — AnAya) ] = Bl = Ba)llzn — Swil|®

= Ballzn = 2012 + (1= Bu) (1 + 6n) 2 — 2[|* + 20,(1 = Ba) 2 — @0 ||

—0n(1 = Bo)llzn—1 — 21> = Au(2a = Ap) (1 = B,)|| Ay — 42|
—(1 = Ba)llyn — An(Ayn — Az) = Jx, (yn — AnAyn)|?
—Bn(1 = Ba)llzn — Swa?
20 = 2[1? + 0n(1 = Ba) |20 — 2|
+20,(1 = Bn)[l2n — 2p-1 > = On(1 = B) 21 — 2% (4.6)

IN

This shows that

|Tn—1 — Z||2 — [|on — 2”2 < On(1 = Bu)lllen — 2”2 = |zp—1 — 2”2]

+20,,(1 = Bo) |20 — Tn1]*.

By Lemma 2.4, we have ||z, — z||?> converges. Thus lim ||z, — z||* exists. So by (4.6) we have
n—oo

An(2a = M) (1= Bo)[[ Ay — Az[* < 0n(1 = B)[l|lzn — 2% = [l2n—1 — 2[|”]
+20n(1 = Bn)llzn — 21|+ llon — 27 = Jzns — 2|

— 0, as mn — o0.
We also have

(1= B)llyn — M(Ay, — Az) — I, (Y — MAy)|I? < 001 = Bo)lllzn — 21? = 201 — 2|1%]
+20n(1 - ﬁn)”xn - xn—1”2 + Hl'n - Z”Q
—|[zn1 — 2|

— 0, as mn — oo.

More over, we obtain

B (1 = Bp)|l7n — Swn”2 < On(1 = Bu)lllen — Z||2 — [|en-1— Z||2]
+20,(1 = B)llzn — o1 P + llzn — 2)° = [lzns1 — 2|17

— 0, as n — oo.

It follows that
Ay — Az[| =0, [lyn — An(Ayn — A2) — Jx, (Yn — M Ayn)|| — 0 and ||z, — Swy|| — 0.

By a similar proof as in Theorem 3.1, we can show that if there exists a subsequence {zy, } of {z,},
such that z,,, — x*, then 2* € F(S) N (A + B)~'0. By Lemma 2.3, we conclude that {x,} weakly
converges to a point in F(S) N (A + B)~'0. We thus complcte the proof. O
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Remark 4.2. [8] We remark here that the conditions (C3) is easily implemented in numerical

computation. Indeed, once x, and r,—1 are given, it is just sufficient to compute the update xp41
with 4.1 by choosing 6, such that 0 < 6, < 6,,, where

9_ _{ mln{mﬂ} Zf l‘n#xnfh

=
0 otherwise,

where {e,} C [0,00) is such that an < o0.

n=1
5 Numerical examples

In this section, we give some numerical experiments to show the efficiency and the comparison with

other methods.

Example 5.1. Solve the following minimization problem:
min || 2 |3 +(3,5, -z + 9+ || = |1,
T€R3
where x = (y1,y2,y3) € R and the fized point problem of S : R3 — R3 defined by
S(z) = (-2—y1,—4 —y2, —y3)-

For each # € R3, we set F(z) =| = ||3 +(3,5,—1)z + 9 and G(x) =|| = ||;. Put A = VF and
B = 0G in Theorem 3.1. We can check that F is convex and differentiable on R? with 2-Lipschitz
continuous gradient. Moreover, G is convex and lower semi-continuous but not differentiable on
R3. We know that, for r > 0

(I +rB) " (z) = (maz{| y1 | —r,0}sign(y1), maz{| y2 | —r,0}sign(ya), max{| ys | —r,0}sign(ys))(5.1)

W;Ha Bn:%, An = 0.0001 for all n € N and € = 0.5. For each n € N, let

(S0 and define 6,, = 6,, as in Remark 3.3. The stopping criterion is defined by

We choose o, =

Wn = (n+1

E, = ||xn — JIr,(I = VF)z,| + ||zn — Szn|| < 1073,

We now study the effect (in terms of convergence and the cpu time) and also consider different
choices of xg and z1 as

Choice 1: xo = (1,2,—1) and 21 = (1,5, 1);

Choice 2: xp = (0,—2,2) and z1 = (2,0, —3);

Choice 3: xg = (—5,4,6) and =1 = ( —5,-9);

Choice 4: o = (1,2,3) and z1 = (8,7, 3).
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Table 1: Using Algorithm 1.13 and Algorithm 3.1 with different choices of xg and x

Algorithm 1.13  Algorithm 3.1

Choice 1 zp=(1,2,—-1) No. of Iter. 92 6
1 = (1,5,1) cpu (Time) 0.045106 0.016301

Choice 2 xp = (0,—2,2) No. of Iter. 92 14
r1 =(2,0,—-3) cpu (Time) 0.039239 0.014759

Choice 3 xo = (—5,4,6) No. of Iter. 92 14
z1 = (3,-5,-9) cpu (Time) 0.064943 0.010813

Choice 4  zp=(1,2,3)  No. of Iter. 92 14
x1 = (8,7,3) cpu (Time) 0.066736 0.047984

The error plotting of Algorithm 1.13 and Algorithm 3.1 for each choice is shown in Figure 1-4,

respectively.

Figure 1: Comparison of Algorithm 1.13 and Algorithm 3.1 for Choice 1
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Figure 2: Comparison of Algorithm 1.13 and Algorithm 3.1 for Choice 2
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Figure 3: Comparison of Algorithm 1.13 and Algorithm 3.1 for Choice 3
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Figure 4: Comparison of Algorithm 1.13 and Algorithm 3.1 for Choice 4
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