EXPONENTIAL STABILITY OF LINEAR SYSTEMS WITH INTERVAL TIME - VARYING DELAYS USING A NEW BOUNDING TECHNIQUE

KANOKWAN NOOPONTA PHATCHARA THAJEEN TACHA JANKOON

An Independent Study Submitted in Partial Fulfillment of the Requirements for the degree of Bachelor of Science Program in Mathematics April 2018

> University of Phayao Copyright 2018 by University of Phayao

Advisor and Dean of School of Science have considered the independent study entitled "Exponential stability of linear systems with interval time-varying delays using a new bounding technique" submitted in partial fulfillment of the requirements for the degree of Bachelor of Science Program in Mathematics is hereby approved

SIGIC Π

(Dr. Wajaree Weera) Chairman

T. Mapel

(Dr. Teerapong La-inchua) Committee and Advisor

U. W, Hhayarat

(Dr. Uamporn Witthayarat)

Committee

. Sompeti

(Assoc. Prof. Preeyanan Sanpote) Dean of School of Science April 2018

© Copyright by University of Phayao

ACKNOWLEDGEMENTS

This independent study could not be successfully completed without the kindness of advisor, Dr. Teerapong La-inchua, that idea, guidance and motivation which enable us to carry out our study since start until successfully. Including, He gave appreciate suggestions, insightful comments and encouragement of this independent study. So, we would like to our independent study advisor.

In addition, we would like to thank for all lectures in Department of Mathematics, University of Phayao, who opened the door of knowledge to us.

Finally, we most gratefully acknowledge our parents and my friends for all their support throughout the period of this independent study.

Kanokwan Nooponta Phatchara Thajeen Tacha Jankoon

ชื่อเรื่อง	เสถียรภาพแบบเลขชี้กำลังของระบบเชิงเส้นที่มีตัวหน่วงแปรผัน
	ตามเวลาโดยใช้วิธีประมาณค่าขอบเขตใหม่
ผู้ศึกษาค้นคว้า	นางสาวกนกวรรณ หนูโพนทา
	นายทชา จานดูณ
	นางสาวพัชรา ทะจีน
อาจารย์ที่ปรึกษา	ดร.ธีรพงษ์ หล้าอินเชื้อ
วิทยาศาสตรบัณฑิต	สาขาวิชาคณิตศาสตร์
คำสำคัญ	เสถียรภาพแบบชี้กำลัง ตัวหน่วงแปรผันตามเวลา ฟังก์ชัน ไลปูนอฟ
	อสมการเมทริกซ์เชิงเส้น

บทคัดย่อ

ในการศึกษาอิสระนี้ศึกษาเกี่ยวกับปัญหาเสถียรภาพเลขชี้กำลังของระบบเชิงเส้นที่มี ตัวหน่วงแปรผันตามเวลา โดยตัวหน่วงดังกล่าวเป็นฟังก์ชันต่อเนื่องและอยู่ในช่วงที่กำหนด แต่ ไม่จำเป็นต้องหาอนุพันธ์ได้ โดยการใช้ฟังก์ชันนอล ไลปูนอฟ คราโซฟสกี้ กับอสมการปริพันธ์ เมทริกซ์อิสระ ทำให้เราได้เงื่อนไขใหม่เพียงพอที่ขึ้นอยู่กับตัวหน่วง สำหรับเสถียรภาพเลขชี้ กำลัง ซึ่งอยู่ในรูปของอสมการเมทริกซเชิงเส้น์ (LMI) ในตอนท้ายของการศึกษาอิสระนี้ได้มี การยกตัวอย่างเชิงตัวเลขเพื่อแสดงให้เห็นถึงประสิทธิภาพของผลลัพธ์นั้น

Title	Exponential stability of linear systems
	with interval time-varying delay using a new bounding
	technique
Author	Miss. Kanokwan Nooponta
	Miss. Phatchara Thajeen
	Mr. Tacha Jankoon
Advisor	Dr. Teerapong La-inchua
Bachelor of Science	Program in Mathematics
Keywords	Exponential stability, Time-varying delay
	Lyapunov function, Linear matrix inequalities

ABSTRACT

This independent study, we investigate exponential stability problem for a class of linear and uncertain linear systems with time-varying delays. The time-delays is assumed to be a continuous function belonging to a given interval, but not necessary to be differentiable. By introduce a set of augmented Lyapunov-Krasovskii functionals combined with the Free-matrix-based integral inequality, new delays-dependent sufficient conditions for the exponential stability of the system is first established in terms of linear matrix inequalities (LMIs). Numerical examples are given to show the effectiveness of our obtained results.

LIST OF CONTENTS

Page

Approved	i		
Acknowledgements			
Abstract in Thai			
Abstract in English			
List of Contents	v		
List of Figures	vii		
List of Table	viii		
Chapter 1 Introduction	1		
Chapter 2 Problem formulation and preliminaries	3		
Chapter 3 Main results	5		
Chapter 4 Numerical Examples	29		
Chapter 5 Conclusions	33		
Bibliography	34		
Appendix	37		
MATLAB Code	59		
Biography	80		

LIST OF FIGURES

Fig	Figures	
1	The trajectory of the solution of system (1) in Example 4.1	30
2	The trajectory of the solution of system (2) in Example 4.2	32

LIST OF TABLE

Table		
1	Maximum allowable upper bounds h_2 of the time-varying delay	
I	for different values of the lower bounds h_1 in example 4.1	31

CHAPTER 1 Introduction

1.1 Introduction

Time-delay systems are widely used to model concrete systems in engineering sciences, such as biology, chemistry, mechanics and so on. So the stability analysis of time-delay systems strongly requires before experimental stage. As these reason, the stability analysis of time-delay system have been an attractive study research field during the past years.

The derivative of the Lyapunov functional in order to make it easy to handle. Stability analysis of linear systems with time-varying delays $\dot{x}(t) = Ax(t) + Dx(t - h(t))$ is fundamental to many practical problems and has received considerable attention. Most of the known results on this problem are derived assuming only that the time-varying delay h(t) is a continuously differentiable function, satisfying some boundedness condition on its derivative : $h(t) \leq \delta < 1$ In delaydependent stability criteria, the main concern is to enlarge the feasible region of stability criteria in given time-delay interval. By constructing augmented Lyapunov functionals and utilizing free weight matrices.

Uncertainty is one of the main features of complex and intelligent decision making systems. Various approaches, methods and techniques in this field have been developed for several decades, starting with such concepts and tools as adaptation, stochastic optimization and statistical decision theory. Another category of approaches is based on the functionals with prescribed derivative. The idea is to apply the functional, that is appropriate for a nominal system and does not depend on the uncertainties, for analysis of the uncertain one. Since our approach belongs to this category, we address the issue in more detail below. One of the crucial goals of the theory was to construct a functional that admits a quadratic lower bound what is of paramount importance for robustness analysis in particular. Such functional was derived in was called the functional of complete type. Its derivative depends on the whole state of a system, and this functional particularly was applied in analysis of systems with delay uncertainties, interesting applications of the functional. It is worth mentioning that there exist other definitions of the complete-type functionals, which are also applied in development of the topic. All these functionals came from the functional with a simple derivative $x^T(t)Wx(t)$ for which a quadratic lower bound does not exist, here W is a positive definite matrix. There is a certain problem when we apply this simple functional for analysis of uncertain systems : its time-derivative along the solutions of a perturbed system is not negative definite, thus the Krasovskii theorem does not hold.

In this paper, we present a new approach for stability analysis of linear time-invariant systems with delay uncertainties, either constant or time-varying, that is developed applying Free matrix based integral inequality. Motivated by the above discretion, we shall desired new criteria for the exponential stability of systems with interval time-varying non-differentiable delay. By introduction a set of improved Lyapunov functionals combined with the NewtonLeibniz formula, we propose new criteria for the exponential stability of the system. The delay-dependent stability conditions are formulated in terms of LMIs, being thus solvable by utilizing MATLAB LMI Control Toolbox available in the literature to date. The approach allows us to apply in exponential stability of uncertain linear systems with interval time-varying delays.

The independent study is organized as follows : Section 2 presents definitions and some well-known technical propositions needed for the proof of the main results. Delay-dependent exponential stability conditions of the system with illustrative numerical examples are show in Section 4. Section 5 gives the conclusions of the paper.

CHAPTER 2 Problem formulation and preliminaries

2.1 Problem formulation and preliminaries

The following notations will be used in this paper. R^+ denotes the set of all real non-negative numbers ; R^n denotes the n-dimensional space with the scalar product $x^T y$ and the vector norm $\| \cdot \|$; $M^{n \times r}$ denotes the space of all matrices of $(n \times r)$ -dimensions ; A^T denotes the transpose of matrix A ; A is symmetric if A $= A^T$; I denotes the identity matrix ; $\lambda(A)$ denotes the set of all eigenvalues of A ; $\lambda_{\min/\max}(A) = \min/\max \{Re\lambda : \lambda \in \lambda(A)\}; x_t := \{x(t+s) : s \in [-h, 0]\},$ $\| x_t \| = \sup_{s \in [-h_2, 0]} \{\| x(t+s) \|\}; C^1([0, t], R^n)$ denotes the set of all R^n -valued continuously differentiable functions on [0, t]; Matrix A is called semi-positive definite $(A \ge 0)$ if $\langle Ax, x \rangle \ge 0$, for all $x \in R^n$; A is positive definite (A > 0) if $\langle Ax, x \rangle > 0$ for all $x \neq 0$; A > B means A - B > 0; * denotes the symmetric term in a matrix.

Consider a linear system with interval time-varying delay of the form :

$$\dot{x}(t) = Ax(t) + Dx(t - h(t)), \quad t \in R^+,$$

$$x(t) = \phi(t), t \in [-h_2, 0]$$
(1)

where $x(t) \in \mathbb{R}^n$ is the state ; $A, D \in M^{n \times n}$, and $\phi(t) \in C^1([-h_2, 0], \mathbb{R}^n)$ is the initial function with the norm $\| \phi \| = \sup_{-h_2 \leq t \leq 0} \{\| \phi(t) \|, \| \dot{\phi}(t) \|\}$. The time-varying delay function h(t) satisfies

$$0 \le h_1 \le h(t) \le h_2, \quad t \in \mathbb{R}^+.$$

Definition 2.1 Given $\alpha > 0$. The zero solution of system (1) is α exponentially stable if there exist a positive number N > 0 such that every solution $x(t, \phi)$ satisfies the following condition:

$$\parallel x(t,\phi) \parallel \le N e^{-\alpha t} \parallel \phi \parallel, \quad \forall t \in R^+.$$

We end this section with the following technical well-known propositions, which will be used in the proof of the main results.

Proposition 2.1 (Cauchy inequality). For any symmetric positive definite matrix $N \in M^{n \times n}$ and $a, b \in \mathbb{R}^n$ we have

$$\pm a^T b \le a^T N a + b^T N^{-1} b.$$

Proposition 2.2 For any symmetric positive definite matrix $M \in M^{n \times n}$, scalar $\gamma>0$ and vector function $\omega:[0,\gamma]\to R^n$ such that the integrations concerned are well defined, the following inequality holds

$$\left(\int_0^\gamma \omega(s)ds\right)^T M\left(\int_0^\gamma \omega(s)ds\right) \le \gamma\left(\int_0^\gamma \omega^T(s)M\omega(s)ds\right).$$

Proposition 2.3 Let E, H and F be any constant matrices of appropriate dimensions and $F^T F \leq I$. For any $\epsilon > 0$, we have

$$EFH + H^T F^T E^T \le \epsilon E E^T + \epsilon^{-1} H^T H.$$

Proposition 2.4 (Schur complement lemma). Given constant matrices X, Y, Z with appropriate dimensions satisfying $X = X^T, Y = Y^T > 0$. Then $X + Z^T Y^{-1} Z < 0$, if and only if

$$\begin{pmatrix} X & Z^T \\ Z & -Y \end{pmatrix} < 0 \text{ or } \begin{pmatrix} -Y & Z \\ Z^T & X \end{pmatrix} < 0 .$$

Lemma 2.1 (Free matrix based integral inequality [3]).

Let $x(r) \in \mathbb{R}^{n \times n}$ be a continuous function : $\{x(r) | r \in [a, b]\}$. For symmetric matrices $M, N \in \mathbb{R}^{3n \times 3n}, R \in \mathbb{R}^{n \times n}$, matrices $x \in \mathbb{R}^{3n \times 3n}, W, Y \in \mathbb{R}^{3n \times n}$ satisfying $\theta = \begin{bmatrix} M & X & Y \\ * & N & W \\ * & * & R \end{bmatrix} \ge 0,$ the following inequality holds : $\int_{0}^{b} dx = \int_{0}^{0} dx = \int_{0}^{0} dx = 0$

$$-\int_{a}^{b} \dot{X}^{T} R \dot{X}(r) dr \leq \xi^{T} \Big((b-a)M + \frac{b-a}{3}N + He\{Y\phi_{1} + W\phi_{2}\} \Big) \xi,$$

where $\phi_{1} = \begin{bmatrix} I & -I & 0 \end{bmatrix}, \qquad \phi_{2} = \begin{bmatrix} -I & -I & 2I \end{bmatrix},$
 $\xi = col \Big\{ x(b), x(a), \frac{1}{b-a} \int_{a}^{b} x(s) ds \Big\}.$

CHAPTER 3 Main results

3.1 Main results

The following notations will be used throughout this paper.

$$\begin{split} J_{11} &= A^T P + PA + 2Q - h_1 e^{-2\alpha h_1} \Phi_1 - h_2 e^{-2\alpha h_2} \Psi_1 - (S_1 A + A^T S_1^T), \\ J_{12} &= -h_1 e^{-2\alpha h_2} \Phi_4 - S_2 A, \\ J_{13} &= -h_2 e^{-2\alpha h_2} \Psi_4 - S_3 A, \\ J_{14} &= J_{41} = PD - S_1 D - S_4 D, \\ J_{15} &= -h_1 e^{-2\alpha h_1} \Phi_7 - S_5 A, \\ J_{16} &= -h_2 e^{-2\alpha h_2} \Psi_7 - S_6 A, \\ J_{17} &= J_{71} = -S_7 A, \\ J_{18} &= J_{81} = S_1 - S_8 A, \\ J_{21} &= -h_1 e^{-2\alpha h_1} \Psi_2 - S_2 A, \\ J_{22} &= e^{2\alpha h_1} Q - h_1 e^{-2\alpha h_2} \Phi_5 - (h_2 - h_1) e^{-2\alpha h_2} \Omega_1, \\ J_{23} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_4 - (0.5) (e^{2\alpha h_1} + e^{2\alpha h_2}) Q, \\ J_{24} &= J_{42} = -S_2 D, \\ J_{25} &= -h_1 e^{-2\alpha h_1} \Phi_8, \\ J_{26} &= J_{62} = 0, \\ J_{27} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_7, \\ J_{28} &= J_{82} = S_2, \\ J_{31} &= -h_2 e^{-2\alpha h_2} \Psi_2 - S_3 A, \\ J_{32} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_2 - (0.5) (e^{2\alpha h_1} + e^{2\alpha h_2}) Q, \\ J_{33} &= -e^{-2\alpha h_2} Q - h_2 e^{-2\alpha h_2} \Psi_5 - (h_2 - h_1) e^{-2\alpha h_2} \Omega_5, \\ J_{34} &= J_{43} = -S_3 D, \\ J_{35} &= J_{53} = 0, \\ J_{36} &= -h_2 e^{-2\alpha h_2} \Psi_8, \\ J_{37} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_8, \\ J_{38} &= J_{83} = S_3, \\ J_{44} &= -2S_4 D = -(S_4 D + D^T S_4^T), \end{split}$$

$$\begin{split} J_{45} &= J_{54} = -S_5 D, \\ J_{46} &= J_{64} = -S_6 D, \\ J_{47} &= J_{74} = -S_7 D, \\ J_{48} &= J_{84} = S_4 - S_8 D, \\ J_{51} &= -h_1 e^{-2\alpha h_1} \Phi_3 - S_5 A, \\ J_{52} &= -h_1 e^{-2\alpha h_1} \Phi_5, \\ J_{55} &= -h_1 e^{-2\alpha h_1} \Phi_9, \\ J_{56} &= J_{65} = 0, \\ J_{57} &= J_{75} = 0, \\ J_{58} &= J_{85} = S_5, \\ J_{61} &= -h_2 e^{-2\alpha h_2} \Psi_3 - S_6 A, \\ J_{63} &= -h_2 e^{-2\alpha h_2} \Psi_6, \\ J_{66} &= -h_2 e^{-2\alpha h_2} \Psi_9, \\ J_{67} &= J_{76} = 0, \\ J_{68} &= S_6, \\ J_{72} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_6, \\ J_{77} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_9, \\ J_{78} &= J_{87} = S_7, \\ J_{88} &= (h_1^2 + h_2^2) R + (h_2 - h_1)^2 U + S_8 + S_8^T. \end{split}$$

Theorem 3.1 Given $\alpha > 0$. The zero solution of system (1) is α exponentially stable if there exist positive matrices P,Q,R,U, positive semi-definite matrices $M_{ii}, N_{ii}(i = 1, 2, 3)$, any matrices $M_{ij}, N_{ij}(i = 1, 2, 3, i \neq j)$ and $S_i(i = 1, 2, ..., 8)$ such that following LMIs hold :

$$\theta = \begin{bmatrix} M & X & Y \\ * & N & W \\ * & * & R \end{bmatrix} \ge 0,$$

$$J_{11} \quad J_{12} \quad J_{13} \quad J_{14} \qquad J_{15} \qquad J_{16} \qquad -S_7A \quad -S_1 - S_8A \\ * \quad J_{22} \quad J_{23} \quad -S_2D \quad J_{25} \qquad 0 \qquad J_{27} \qquad S_2 \\ * \quad * \quad J_{33} \quad -S_3D \quad 0 \qquad J_{36} \qquad J_{37} \qquad S_4 \\ * \quad * \quad * \quad * \quad -2S_4D \quad -S_5D \quad -S_6D \quad -S_7D \quad S_4 - S_8D \\ * \quad * \quad * \quad * \quad * \quad J_{55} \qquad 0 \qquad 0 \qquad S_5 \\ * \quad * \quad * \quad * \quad * \quad * \quad J_{66} \qquad 0 \qquad S_6 \\ * \quad J_{77} \qquad S_7 \\ * \quad J_{88} \end{bmatrix} < 0,$$

$$(3.1)$$

where

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix},$$
$$N = \begin{bmatrix} N_{11} & N_{12} & N_{13} \\ N_{21} & N_{22} & N_{23} \\ N_{31} & N_{32} & N_{33} \end{bmatrix}.$$

Proof We introduce the following LyapunovKrasovskii functional for the system (1) $_{7}$

$$V(t,x_t) = \sum_{i=1}^7 V_i \; ,$$

where

$$V_1 = x^T(t)Px(t),$$
 (3.1.1)

$$V_2 = \int_{t-h_1}^t e^{2\alpha(s-t)} x^T(s) Q x(s) ds, \qquad (3.1.2)$$

$$V_3 = \int_{t-h_2}^t e^{2\alpha(s-t)} x^T(s) Qx(s) ds, \qquad (3.1.3)$$

$$V_4 = \int_{t-h_2}^{t-h_1} e^{2\alpha(s-t)} x^T(s) Qx(s) ds, \qquad (3.1.4)$$

$$V_5 = h_1 \int_{-h_1}^0 \int_{t+s}^t e^{-2\alpha(\tau-t)} \dot{x}^T(\tau) R \dot{x}(\tau) d\tau \, ds, \qquad (3.1.5)$$

$$V_6 = h_2 \int_{-h_2}^0 \int_{t+s}^t e^{-2\alpha(\tau-t)} \dot{x}^T(\tau) R \dot{x}(\tau) d\tau \ ds, \qquad (3.1.6)$$

$$V_7 = (h_2 - h_1) \int_{-h_2}^{-h_1} \int_{t+s}^{t} e^{2\alpha(\tau-t)} \dot{x}^T(\tau) U \dot{x}(\tau) d\tau \ ds.$$
(3.1.7)

From (3.1.1), we have

$$\lambda_{\min}(P) \parallel x \parallel^2 \le x^T(t) P x(t) \le V(t, x_t) .$$

From (3.1.2), we have

$$V_{2} = \int_{t-h_{1}}^{t} e^{2\alpha s} \cdot e^{-2\alpha t} x^{T}(s) Qx(s) ds$$

$$\leq \int_{t-h_{1}}^{t} x^{T}(s) Qx(s) ds$$

$$\leq \int_{t-h_{1}}^{t} \lambda_{\max}(Q) \parallel x(t) \parallel^{2} ds$$

$$= \lambda_{\max}(Q) \parallel x(t) \parallel^{2} \int_{t-h_{1}}^{t} 1 ds$$

$$\leq \lambda_{\max}(Q) \parallel x(t) \parallel^{2} h_{1}$$

$$\leq \lambda_{\max}(Q) h \parallel x(t) \parallel^{2}$$

From (3.1.3), we have

$$V_{3} = \int_{t-h_{2}}^{t} e^{2\alpha t} \cdot e^{-2\alpha t} x^{T}(s) Qx(s) ds$$
$$= \int_{t-h_{2}}^{t} e^{2\alpha t} x^{T}(s) Qx(s) ds$$
$$\leq \int_{t-h_{2}}^{t} \lambda_{\max}(Q) \parallel x(t) \parallel^{2} ds$$
$$= \lambda_{\max}(Q) \parallel x(t) \parallel^{2} \int_{t-h_{2}}^{t} 1 ds$$
$$= \lambda_{\max}(Q) \parallel x(t) \parallel^{2} h_{2}$$

$$\leq \lambda_{\max}(Q) \ h_2 \ \| \ x(t) \|^2$$

$$\leq \lambda_{\max}(Q) \ \| \ x_t \|^2 \ h_2 .$$

From (3.1.4), we have $\int_{\ell^{t-h_1}}^{\ell^{t-h_1}}$

$$V_{4} = \int_{t-h_{2}}^{t-h_{1}} e^{2\alpha s} \cdot e^{-2\alpha t} x^{T}(s) Qx(s) ds$$

$$\leq \int_{t-h_{2}}^{t-h_{1}} e^{2\alpha(t-h_{1})} \cdot e^{-2\alpha t} x^{T}(s) Qx(s) ds$$

$$= \int_{t-h_{2}}^{t-h_{1}} e^{-2\alpha h_{1}} x^{T}(s) Qx(s) ds$$

$$= e^{-2\alpha h_{1}} \int_{t-h_{2}}^{t-h_{1}} x^{T}(s) Qx(s) ds$$

$$\leq e^{-2\alpha h_{1}} \int_{t-h_{2}}^{t-h_{1}} \lambda_{\max}(Q) \parallel x(t) \parallel^{2} ds$$

$$= e^{-2\alpha h_{1}} \lambda_{\max}(Q) \parallel x(t) \parallel^{2} \int_{t-h_{2}}^{t-h_{1}} 1 ds$$

$$= e^{-2\alpha h_{1}} \lambda_{\max}(Q) \parallel x(t) \parallel^{2} (h_{2} - h_{1})$$

$$\leq \lambda_{\max}(Q) \parallel x_{t} \parallel^{2} (h_{2} - h_{1}) .$$

From (3.1.5), we have

$$\begin{split} V_{5} &\leq h_{1} \int_{-h_{1}}^{0} \int_{t+h_{1}}^{t} e^{2\alpha h_{1}} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau \, ds \\ &= h_{1} e^{2\alpha h_{1}} \int_{t-h_{1}}^{t} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau \, \int_{-h_{1}}^{0} 1 \, ds \\ &= h_{1} e^{2\alpha h_{1}} \int_{t-h_{1}}^{t} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau \, (h_{1}) \\ &= (h_{1})^{2} \int_{t-h_{1}}^{t} \lambda_{\max} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau \\ &\leq \lambda_{\max}(R) \parallel \dot{x}(t) \parallel^{2} \ (h_{1})^{2} \\ &= \lambda_{\max}(R) (\parallel A x(t) + D x(t-h(t)) \parallel)^{2} \ (h_{1})^{2} \\ &= \lambda_{\max}(R) (h_{1})^{2} \ (\parallel A \parallel^{2} \parallel x(t) \parallel^{2} \\ &+ 2 \parallel A \parallel \parallel x(t) \parallel \parallel D \parallel \parallel x(t-h(t)) \parallel + \parallel D \parallel^{2} \parallel x(t) \parallel^{2} \\ &\leq \lambda_{\max}(R) (h_{1})^{2} (\parallel A \parallel^{2} + 2 \parallel A \parallel \parallel D \parallel + \parallel D \parallel^{2}) \parallel x(t) \parallel^{2} \\ &\leq \lambda_{\max}(R) (h_{1})^{2} (\parallel A \parallel^{2} + 2 \parallel A \parallel \parallel D \parallel + \parallel D \parallel^{2}) \parallel x_{t} \parallel^{2} . \end{split}$$

From (3.1.6), we have $\int_{0}^{0} \int_{0}^{t} f^{t}$

$$V_{6} \leq h_{2} \int_{-h_{2}}^{0} \int_{t+h_{2}}^{t} e^{2\alpha h_{2}} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau \, ds$$

= $h_{2} e^{2\alpha h_{2}} \int_{t-h_{2}}^{t} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau \int_{-h_{1}}^{0} 1 \, ds$
= $h_{2} e^{2\alpha h_{2}} \int_{t-h_{2}}^{t} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau \, (h_{2})$

$$= (h_2)^2 \int_{t-h_2}^t \lambda_{\max} \dot{x}^T(\tau) R \dot{x}(\tau) d\tau$$

$$\leq \lambda_{\max}(R) \parallel \dot{x}(t) \parallel^2 (h_2)^2$$

$$= \lambda_{\max}(h_2)^2(R) (\parallel Ax(t) + Dx(t - h(t)) \parallel)^2$$

$$= \lambda_{\max}(h_2)^2(R) (\parallel A \parallel^2 \parallel x(t) \parallel^2$$

$$+ 2 \parallel A \parallel \parallel x(t) \parallel \parallel D \parallel \parallel x(t - h(t)) \parallel + \parallel D \parallel^2 \parallel x(t - h(t)) \parallel^2)$$

$$\leq \lambda_{\max}(h_2)^2(R) (\parallel A \parallel^2 + 2 \parallel A \parallel \parallel D \parallel + \parallel D \parallel^2) \parallel x(t) \parallel^2$$

$$\leq \lambda_{\max}(h_2)^2(R) (\parallel A \parallel^2 + 2 \parallel A \parallel \parallel D \parallel + \parallel D \parallel^2) \parallel x(t) \parallel^2$$

From (3.1.7), we have

$$\begin{split} &\text{m (3.1.7), we have} \\ V_7 \leq (h_2 - h_1) \int_{-h_2}^{-h_1} \int_{t-h_2}^{t} e^{2\alpha h_2} \dot{x}^T(\tau) U \dot{x}(\tau) d\tau \, ds \\ &= (h_2 - h_1) e^{2\alpha h_2} \int_{t-h_2}^{t} \dot{x}^T(\tau) U \dot{x}(\tau) d\tau \, \int_{-h_2}^{-h_1} 1 \, ds \\ &= (h_2 - h_1) e^{2\alpha h_2} \int_{t-h_2}^{t} \dot{x}^T(\tau) U \dot{x}(\tau) d\tau \, (h_2 - h_1) \\ &= (h_2 - h_1)^2 \int_{t-h_2}^{t} \lambda_{\max} \dot{x}^T(\tau) U \dot{x}(\tau) d\tau \\ &\leq \lambda_{\max}(U) \parallel \dot{x}(t) \parallel^2 (h_2 - h_1) (h_2 - h_1) \\ &= \lambda_{\max}(U) (h_2 - h_1)^2 (\parallel A \parallel^2 \parallel x(t) \parallel^2 \\ &+ 2 \parallel A \parallel \parallel x(t) \parallel \parallel D \parallel \parallel x(t - h(t) \parallel + \parallel D \parallel^2 \parallel x - (t - h(t)) \parallel^2 \\ &\leq \lambda_{\max}(U) (h_2 - h_1)^2 (\parallel A \parallel^2 + 2 \parallel A \parallel \parallel D \parallel + \parallel D \parallel^2) \parallel x(t) \parallel^2 \\ &\leq \lambda_{\max}(U) (h_2 - h_1)^2 (\parallel A \parallel^2 + 2 \parallel A \parallel \parallel D \parallel + \parallel D \parallel^2) \parallel x(t) \parallel^2 \\ &\leq \lambda_{\max}(U) (h_2 - h_1)^2 (\parallel A \parallel^2 + 2 \parallel A \parallel \parallel D \parallel + \parallel D \parallel^2) \parallel x_t \parallel^2 . \end{split}$$

It easy to verify that

$$\lambda_1 \parallel x(t) \parallel^2 \le V(t, x_t) \le \lambda_2 \parallel x_t \parallel^2, \quad \forall_t \ge 0.$$
 (3.2)

By taking the derivative of V_1 along the solution of system (1), we have

$$\begin{split} \dot{V}_{1} &= x^{T} P x(t) \\ &= x^{T}(t) \frac{d}{dx} P x(t) + \frac{d}{dx} x^{T}(t) P x(t) \\ &= x^{T}(t) P \dot{x}(t) + \dot{x}^{T}(t) P x(t) \\ &= 2x^{T}(t) P \dot{x}(t) \\ &= 2x^{T}(t) P [A x(t) + D x(t - h(t)]] \\ &= 2x^{T}(t) P A x(t) + 2x^{T}(t) P D x(t - h(t)) \\ &= x^{T}(t) P A x(t) + x^{T}(t) P A x(t) + 2x^{T} P D x(t - h(t)) \\ &= x^{T}(t) [P A + P A] x(t) + 2x^{T}(t) P D x(t - h(t)) \end{split}$$

$$= x^T(t) \left[A^T P + P A \right] x(t) + 2 x^T(t) P D x(t - h(t)) \ .$$

$$\begin{split} \dot{V}_2 &= \frac{d}{dt} \int_{t-h_1}^t e^{2\alpha(s-t)} x^T(s) Qx(s) ds \\ &= \frac{d}{dt} \Big(e^{-2\alpha t} \int_{t-h_1}^t e^{2\alpha s} x^T(s) Qx(s) ds \Big) \\ &= e^{-2\alpha t} \frac{d}{dt} \int_{t-h_1}^t e^{2\alpha s} x^T(s) Qx(s) ds + \int_{t-h_1}^t e^{2\alpha s} x^T(s) Qx(s) ds \frac{d}{dt} e^{-2\alpha t} \\ &= \Big[e^{-2\alpha t} e^{2\alpha t} x^T(t) Qx(t) - e^{-2\alpha t} e^{2\alpha(t-h_1)} x^T(t-h_1) Qx(t-h_1) \Big] \\ &-2\alpha \int_{t-h_2}^t e^{2\alpha s} x^T(s) Qx(s) ds e^{-2\alpha t} \\ &= \Big[e^{-2\alpha t} e^{2\alpha t} x^T(t) Qx(t) - e^{-2\alpha t} e^{2\alpha(t-h_1)} x^T(t-h_1) Qx(t-h_1) \Big] \\ &-2\alpha \int_{t-h_2}^t e^{2\alpha (s-t)} x^T(s) Qx(s) ds \\ &= x^T(t) Qx(t) - e^{-2\alpha h_1} x^T(t-h_1) Qx(t-h_1) - 2\alpha V_2 \,. \end{split}$$

$$\begin{split} \dot{V}_{3} &= \frac{d}{dt} \int_{t-h_{2}}^{t} e^{2\alpha(s-t)} x^{T}(s) Qx(s) ds \\ &= \frac{d}{dt} \left(e^{-2\alpha t} \int_{t-h_{2}}^{t} e^{2\alpha s} x^{T}(s) Qx(s) ds \right) \\ &= e^{-2\alpha t} \frac{d}{dt} \int_{t-h_{2}}^{t} e^{2\alpha s} x^{T}(s) Qx(s) ds + \int_{t-h_{2}}^{t} e^{2\alpha s} x^{T}(s) Qx(s) ds \frac{d}{dt} e^{-2\alpha t} \\ &= \left[e^{-2\alpha t} e^{2\alpha t} x^{T}(t) Qx(t) - e^{-2\alpha t} e^{2\alpha(t-h_{2})} x^{T}(t-h_{2}) Qx(t-h_{2}) \right] \\ &-2\alpha \int_{t-h_{2}}^{t} e^{2\alpha s} x^{T}(s) Qx(s) ds e^{-2\alpha t} \\ &= \left[e^{-2\alpha t} e^{2\alpha t} x^{T}(t) Qx(t) - e^{-2\alpha t} e^{2\alpha(t-h_{2})} x^{T}(t-h_{2}) Qx(t-h_{2}) \right] \\ &-2\alpha \int_{t-h_{2}}^{t} e^{2\alpha(s-t)} x^{T}(s) Qx(s) ds \\ &= x^{T}(t) Qx(t) - e^{-2\alpha h_{2}} x^{T}(t-h_{2}) Qx(t-h_{2}) - 2\alpha V_{3} . \end{split}$$

$$\begin{split} \dot{V}_4 &= \frac{d}{dt} \int_{t-h_2}^{t-h_1} e^{2\alpha(s-t)} x^T(s) Qx(s) ds \\ &= \frac{d}{dt} \left(e^{-2\alpha t} \int_{t-h_2}^{t-h_1} e^{2\alpha s} x^T(s) Qx(s) ds \right) \\ &= e^{-2\alpha t} \frac{d}{dt} \int_{t-h_2}^{t-h_1} e^{2\alpha s} x^T(s) Qx(s) ds + \int_{t-h_2}^{t-h_1} e^{2\alpha s} x^T(s) Qx(s) ds \frac{d}{dt} e^{-2\alpha t} \\ &= e^{-2\alpha h_1} \left[x^T(t-h_1) Qx(t-h_1) - e^{2\alpha h_2} x^T(t-h_2) Qx(t-h_2) \right] \\ &-2e^{-2\alpha} V_4. \end{split}$$

$$\begin{split} \dot{V}_{5} &= \frac{d}{dt} \Big(h_{1} e^{-2\alpha t} \int_{-h_{1}}^{0} \int_{t+s}^{t} e^{2\alpha \tau} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau ds \Big) \\ &= h_{1} e^{-2\alpha t} \frac{d}{dt} \int_{-h_{1}}^{0} \int_{t+s}^{t} e^{2\alpha \tau} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau ds \\ &+ \int_{-h_{1}}^{0} \int_{t+s}^{t} e^{2\alpha \tau} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau ds \frac{d}{dt} h_{1} e^{-2\alpha t} \\ &= h_{1} e^{-2\alpha t} \frac{d}{dt} \int_{-h_{1}}^{0} \int_{t+s}^{t} e^{2\alpha \tau} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau ds \\ &- 2\alpha h_{1} \int_{-h_{1}}^{0} \int_{t+s}^{t} e^{2\alpha \tau} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau ds \\ &= h_{1} e^{-2\alpha t} \frac{d}{dt} \int_{-h_{1}}^{0} \int_{t+s}^{t} e^{2\alpha \tau} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau ds \\ &= h_{1} e^{-2\alpha t} \frac{d}{dt} \int_{-h_{1}}^{0} \int_{t+s}^{t} e^{2\alpha \tau} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau ds \\ &= h_{1} e^{-2\alpha t} \frac{d}{dt} \int_{-h_{1}}^{0} \int_{t+s}^{t} e^{2\alpha \tau} \dot{x}^{T}(\tau) R \dot{x}(\tau) d\tau ds \\ &= h_{1} e^{-2\alpha t} \int_{-h_{1}}^{0} e^{2\alpha t} \dot{x}^{T}(t) R \dot{x}(t) - e^{2\alpha (t+s)} \dot{x}^{T}(t+s) R \dot{x}(t+s) ds - 2\alpha V_{5} \\ &= h_{1} e^{-2\alpha t} e^{2\alpha t} \int_{-h_{1}}^{0} \left(\dot{x}^{T}(t) R \dot{x}(t) - e^{2\alpha s} \dot{x}^{T}(t+s) R \dot{x}(t+s) \right) ds - 2\alpha V_{5} \\ &= h_{1} \int_{-h_{1}}^{0} \dot{x}^{T}(t) R \dot{x}(t) - e^{2\alpha s} \dot{x}^{T}(t+s) R \dot{x}(t+s) \right) ds - 2\alpha V_{5} \\ &= h_{1} \int_{-h_{1}}^{0} \dot{x}^{T}(t) R \dot{x}(t) ds - h_{1} \int_{-h_{1}}^{0} e^{2\alpha s} \dot{x}^{T}(t+s) R \dot{x}(t+s) ds - 2\alpha V_{5} \\ &= h_{1} \dot{x}^{T}(t) R \dot{x}(t) \int_{-h_{1}}^{0} ds - h_{1} \int_{-h_{1}}^{0} e^{2\alpha s} \dot{x}^{T}(t+s) R \dot{x}(t+s) ds - 2\alpha V_{5} \\ &= h_{1} \dot{x}^{T}(t) R \dot{x}(t) - h_{1} \int_{-h_{1}}^{0} e^{2\alpha s} \dot{x}^{T}(t+s) R \dot{x}(t+s) ds - 2\alpha V_{5} \\ &= h_{1}^{2} \dot{x}^{T}(t) R \dot{x}(t) - h_{1} \int_{-h_{1}}^{t} e^{2\alpha (\theta-t)} \dot{x}^{T}(\theta) R \dot{x}(\theta) d\theta - 2\alpha V_{5} \\ &= h_{1}^{2} \dot{x}^{T}(t) R \dot{x}(t) - h_{1} \int_{t-h_{1}}^{t} e^{2\alpha (s-t)} \dot{x}^{T}(s) R \dot{x}(s) ds - 2\alpha V_{5} \\ &= h_{1}^{2} \dot{x}^{T}(t) R \dot{x}(t) - h_{1} \int_{t-h_{1}}^{t} e^{2\alpha (t-h_{1})} e^{-2\alpha t} \dot{x}^{T}(s) R \dot{x}(s) ds - 2\alpha V_{5} \\ &= h_{1}^{2} \dot{x}^{T}(t) R \dot{x}(t) - h_{1} \int_{t-h_{1}}^{t} e^{2\alpha (t-h_{1})} e^{-2\alpha t} \dot{x}^{T}(s) R \dot{x}(s) ds - 2\alpha V_{5} \\ &= h_{1}^{2} \dot{x}^{T}(t) R \dot{x}(t) - h_{1} \int_{t-h_{1}}^{t} e^{2\alpha (t-h_{1})} e^{-2\alpha t} \dot{x}^{T}(s) R \dot{x}(s) ds - 2\alpha V_{5} \\ &$$

By applying Proposition 2.2, Newton-Leibniz formula and Lemma 2.1, we obtain

$$\begin{split} \dot{V}_5 &\leq h_1^2 \dot{x}^T(t) R \dot{x}(t) + x(t) \Phi_1 h_1 e^{-2\alpha h_1} x^T(t) + x(t-h_1) \Phi_4 h_2 e^{-2\alpha h_1} x^T(t) \\ &+ \frac{1}{h_1} \int_{t-h_1}^t x(s) ds \Phi_7 h_1 e^{-2\alpha h_1} x^T(t) + x(t) \Phi_2 h_1 e^{-2\alpha h_1} x^T(t-h_1) \\ &+ x(t-h_1) \Phi_5 h_1 e^{-2\alpha h_1} x^T(t-h_1) + \frac{1}{h_1} \int_{t-h_1}^t x(s) ds \Phi_8 h_1 e^{-2\alpha h_1} x^T(t-h_1) \end{split}$$

$$\begin{split} &+x(t)\Phi_{3}h_{1}e^{-2\alpha h_{1}}\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T}+x(t-h_{1})\Phi_{6}h_{1}e^{-2\alpha h_{1}}\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T} \\ &+\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\Phi_{9}h_{1}e^{-2\alpha h_{1}}\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T}-2\alpha V_{5} \;, \\ \vec{V}_{6} &=h_{2}e^{-2\alpha t}\int_{-h_{2}}^{0}\int_{t+s}^{t}e^{2\alpha \tau}\dot{x}^{T}(\tau)R\dot{x}(\tau)d\tau\;ds \\ &=h_{2}e^{-2\alpha t}\frac{d}{dt}\int_{-h_{2}}^{0}\int_{t+s}^{t}e^{2\alpha \tau}\dot{x}^{T}(\tau)R\dot{x}(\tau)d\tau\;ds \\ &+\int_{-h_{2}}^{0}\int_{t+s}^{t}e^{2\alpha \tau}\dot{x}^{T}(\tau)R\dot{x}(\tau)d\tau\;ds \\ &=h_{2}e^{-2\alpha t}\frac{d}{dt}\int_{-h_{2}}^{0}\int_{t+s}^{t}e^{2\alpha \tau}\dot{x}^{T}(\tau)R\dot{x}(\tau)d\tau\;ds \\ &-2\alpha h_{2}\int_{-h_{2}}^{0}\int_{t+s}^{t}e^{2\alpha \tau}\dot{x}^{T}(\tau)R\dot{x}(\tau)d\tau\;ds \\ &=h_{2}e^{-2\alpha t}\frac{d}{dt}\int_{-h_{2}}^{0}\int_{t+s}^{t}e^{2\alpha \tau}\dot{x}^{T}(\tau)R\dot{x}(\tau)d\tau\;ds \\ &=h_{2}e^{-2\alpha t}\frac{d}{dt}\int_{-h_{2}}^{0}\int_{t+s}^{t}e^{2\alpha \tau}\dot{x}^{T}(\tau)R\dot{x}(\tau)d\tau\;ds \\ &=h_{2}e^{-2\alpha t}\int_{-h_{2}}^{0}e^{2\alpha t}(\dot{x}^{\tau}(t)R\dot{x}(t)-e^{2\alpha s}\dot{x}^{\tau}(t+s)R\dot{x}(t+s)ds-2\alpha V_{6} \\ &=h_{2}e^{-2\alpha t}\int_{-h_{2}}^{0}\dot{x}^{\tau}(t)R\dot{x}(t)-e^{2\alpha s}\dot{x}^{\tau}(t+s)R\dot{x}(t+s)ds-2\alpha V_{6} \\ &=h_{2}\int_{-h_{2}}^{0}\dot{x}^{\tau}(t)R\dot{x}(t)ds-h_{2}\int_{-h_{2}}^{0}e^{2\alpha s}\dot{x}^{\tau}(t+s)R\dot{x}(t+s)ds-2\alpha V_{6} \\ &=h_{2}\int_{-h_{2}}^{0}\dot{x}^{\tau}(t)R\dot{x}(t)ds-h_{2}\int_{-h_{2}}^{0}e^{2\alpha s}\dot{x}^{\tau}(t+s)R\dot{x}(t+s)ds-2\alpha V_{6} \\ &=h_{2}\dot{x}^{\tau}(t)R\dot{x}(t)\int_{-h_{2}}^{0}ds-h_{2}\int_{-h_{2}}^{0}e^{2\alpha s}\dot{x}^{\tau}(t+s)R\dot{x}(t+s)ds-2\alpha V_{6} \\ &=h_{2}\dot{x}^{\tau}(t)R\dot{x}(t)\int_{-h_{2}}^{0}ds-h_{2}\int_{-h_{2}}^{0}e^{2\alpha s}\dot{x}^{\tau}(t+s)R\dot{x}(t+s)ds-2\alpha V_{6} \\ &=h_{2}\dot{x}^{\tau}(t)R\dot{x}(t)-h_{2}\int_{-h_{2}}^{t}e^{2\alpha (s-t)}\dot{x}^{\tau}(s)R\dot{x}(s)ds-2\alpha V_{6} \\ &=h_{2}^{2}\dot{x}^{\tau}(t)R\dot{x}(t)-h_{2}\int_{-h_{2}}^{t}e^{2\alpha (s-t)}\dot{x}^{\tau}(s)R\dot{x}(s)ds-2\alpha V_{6} \\ &\leq h_{2}^{2}\dot{x}^{\tau}(t)R\dot{x}(t)-h_{2}\int_{t-h_{2}}^{t}e^{2\alpha (s-t)}\dot{x}^{\tau}(s)R\dot{x}(s)ds-2\alpha V_{6} \\ &\leq h_{2}^{2}\dot{x}^{\tau}(t)R\dot{x}(t$$

$$\begin{split} \dot{V}_6 &\leq h_2^2 \dot{x}^\tau(t) R \dot{x}(t) + x(t) \Psi_1 h_2 e^{-2\alpha h_2} x^T(t) + x(t-h_2) \Psi_4 h_2 e^{-2\alpha h_2} x^T(t) \\ &+ \frac{1}{h_2} \int_{t-h_2}^t x(s) ds \Psi_7 h_2 e^{-2\alpha h_2} x^T(t) + x(t) \Psi_2 h_2 e^{-2\alpha h_2} x^T(t-h_2) \end{split}$$

$$+ x(t-h_2)\Psi_5h_2e^{-2\alpha h_2}x^T(t-h_2) + \frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Psi_8h_2e^{-2\alpha h_2}x^T(t-h_2) + x(t)\Psi_3h_2e^{-2\alpha h_2}\frac{1}{h_2}\int_{t-h_2}^t x(s)ds^T + x(t-h_2)\Psi_6h_2e^{-2\alpha h_2}\frac{1}{h_2}\int_{t-h_2}^t x(s)ds^T + \frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Psi_9h_2e^{-2\alpha h_2}\frac{1}{h_2}\int_{t-h_2}^t x(s)ds^T - 2\alpha V_6 ,$$

$$\begin{split} \dot{V}_{7} &= (h_{2} - h_{1}) \int_{-h_{2}}^{-h_{1}} \int_{t+s}^{t} e^{2\alpha\tau} e^{-2\alpha t} \dot{x}^{T}(\tau) U \dot{x}(\tau) d\tau ds \\ &= (h_{2} - h_{1}) e^{-2\alpha t} \int_{-h_{2}}^{-h_{1}} \left[\int_{t+s}^{t} e^{2\alpha\tau} \dot{x}^{T}(\tau) U \dot{x}(\tau) d\tau \right] ds \\ &= (h_{2} - h_{1}) e^{-2\alpha t} \frac{d}{dt} \int_{-h_{2}}^{-h_{1}} \int_{t+s}^{t} e^{2\alpha\tau} \dot{x}^{T}(\tau) U \dot{x}(\tau) d\tau ds \\ &\quad + \frac{d}{dt} (h_{2} - h_{1}) e^{-2\alpha t} \left[\int_{-h_{2}}^{-h_{1}} \int_{t+s}^{t} e^{2\alpha\tau} \dot{x}^{T}(\tau) U \dot{x}(\tau) d\tau ds \right] \\ &= (h_{2} - h_{1}) e^{-2\alpha t} \frac{d}{dt} \int_{-h_{2}}^{-h_{1}} \int_{t+s}^{t} e^{2\alpha\tau} \dot{x}^{T}(\tau) U \dot{x}(\tau) d\tau ds \\ &\quad -2\alpha (h_{2} - h_{1}) e^{-2\alpha t} \int_{-h_{2}}^{-h_{1}} \int_{t+s}^{t} e^{2\alpha\tau} \dot{x}^{T}(\tau) U \dot{x}(\tau) d\tau ds \\ &= (h_{2} - h_{1}) e^{-2\alpha t} \frac{d}{dt} \int_{-h_{2}}^{-h_{1}} \int_{t+s}^{t} e^{2\alpha\tau} \dot{x}^{T}(\tau) U \dot{x}(\tau) d\tau ds \\ &= (h_{2} - h_{1}) e^{-2\alpha t} \frac{d}{dt} \int_{-h_{2}}^{-h_{1}} \int_{t+s}^{t} e^{2\alpha\tau} \dot{x}^{T}(\tau) U \dot{x}(\tau) d\tau ds \\ &= (h_{2} - h_{1}) e^{-2\alpha t} \frac{d}{dt} \int_{-h_{2}}^{-h_{1}} \int_{t+s}^{t} e^{2\alpha\tau} \dot{x}^{T}(\tau) U \dot{x}(\tau) d\tau ds \\ &= (h_{2} - h_{1}) e^{-2\alpha t} \frac{d}{dt} \int_{-h_{2}}^{-h_{1}} \int_{t+s}^{t} e^{2\alpha\tau} \dot{x}^{T}(\tau) U \dot{x}(\tau) d\tau ds \\ &= (h_{2} - h_{1}) e^{-2\alpha t} \frac{d}{dt} \int_{-h_{2}}^{-h_{1}} \int_{t+s}^{t} e^{2\alpha\tau} \dot{x}^{T}(\tau) U \dot{x}(\tau) d\tau ds \\ &= (h_{2} - h_{1}) e^{-2\alpha t} \int_{-h_{2}}^{-h_{1}} \int_{t+s}^{t} e^{2\alpha\tau} \dot{x}^{T}(\tau) U \dot{x}(\tau) d\tau ds \\ &= (h_{2} - h_{1}) e^{-2\alpha t} \int_{-h_{2}}^{-h_{1}} \int_{t+s}^{t} e^{2\alpha\tau} \dot{x}^{T}(\tau) U \dot{x}(\tau) d\tau ds - 2\alpha V_{7} \\ &= (h_{2} - h_{1}) e^{-2\alpha t} \int_{-h_{2}}^{-h_{1}} \left(e^{2\alpha t} \dot{x}^{T}(t) U \dot{x}(t) - e^{2\alpha(t+s)} \dot{x}^{T}(t+s) U \dot{x}(t+s) \right) ds \\ &-2\alpha V_{7} \\ &= (h_{2} - h_{1})^{2} \dot{x}^{T}(t) U \dot{x}(t) - (h_{2} - h_{1}) \int_{-h_{2}}^{-h_{1}} e^{2\alpha s} \dot{x}^{T}(t) u \dot{x}(s) ds - 2\alpha V_{7} \\ &= (h_{2} - h_{1})^{2} \dot{x}^{T}(t) U \dot{x}(t) - (h_{2} - h_{1}) e^{2\alpha h_{2}} \int_{t-h_{2}}^{t-h_{1}} \dot{x}^{T}(s) U \dot{x}(s) ds - 2\alpha V_{7} . \end{split}$$

By using Proposition 2.2, Newton-Leibniz formula and Lemma 2.1, we obtain

$$\dot{V}_{7} \leq (h_{2} - h_{1})^{2} \dot{x}^{T}(t) U \dot{x}(t) + x(t - h_{1})(h_{2} - h_{1})e^{-2\alpha h_{2}} \Omega_{1} x^{T}(t - h_{1}) + x(t - h_{2})(h_{2} - h_{1})e^{-2\alpha h_{2}} \Omega_{4} x^{T}(t - h_{1}) + \frac{1}{h_{2} - h_{1}} \int_{t - h_{2}}^{t - h_{1}} x(s) ds(h_{2} - h_{1})e^{-2\alpha h_{2}} \Omega_{7} x^{T}(t - h_{1})$$

$$\begin{aligned} &+x(t-h_{1})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{2}x^{T}(t-h_{2}) \\ &+x(t-h_{2})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{5}x^{T}(t-h_{2}) \\ &+\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{8}x^{T}(t-h_{2}) \\ &+x(t-h_{1})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{3}\left(\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T} \\ &+x(t-h_{2})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{6}\left(\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T} \\ &+\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{9}\left(\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T} \\ &-2\alpha V_{7}. \end{aligned}$$

Therefore , we have

$$\begin{split} \dot{V}(.) &+ 2\alpha V(.) \\ &\leq x^{T}(t) \left[A^{T}P + PA \right] x(t) + 2x^{T}(t) PDx(t-h(t)) + x^{T}Qx(t) \\ &- e^{2\alpha h_{1}}x^{T} \left(t - h_{1}Qx(t-h_{2}) \right) \\ &+ e^{2\alpha h_{1}}x^{T} \left(t - h_{1}Qx(t-h_{1}) \right) - e^{2\alpha h_{2}}x^{T} \left(t - h_{2}Qx(t-h_{2}) \right) + h_{1}^{2}\dot{x}^{T}(t)R\dot{x}(t) \\ &- h_{1}e^{-2\alpha h_{1}} \int_{t-h_{1}}^{t} \dot{x}^{T}(s)R\dot{x}(s)ds + h_{2}^{2}\dot{x}^{T}(t)R\dot{x}(t) - h_{2}e^{-2\alpha h_{2}} \int_{t-h_{2}}^{t} \dot{x}^{T}(s)R\dot{x}(s)ds \\ &+ (h_{2} - h_{1})^{2}\dot{x}^{T}(t)R\dot{x}(t) - (h_{2} - h_{1})e^{-2\alpha h_{2}} \int_{t-h_{2}}^{t-h_{1}} \dot{x}^{T}(s)R\dot{x}(s)ds \\ &\leq x^{T}(t) \left[A^{T}P + PA \right] x(t) + 2x^{T}(t)PDx(t-h(t)) + x^{T}Qx(t) \\ &- e^{2\alpha h_{1}}x^{T} \left(t - h_{1}Qx(t-h_{2}) \right) + e^{2\alpha h_{1}}x^{T} \left(t - h_{1}Qx(t-h_{1}) \right) \\ &- e^{2\alpha h_{2}}x^{T} \left(t - h_{2}Qx(t-h_{2}) \right) \\ &+ h_{1}^{2}\dot{x}^{T}(t)R\dot{x}(t) + x(t)\Phi_{1}h_{1}e^{-2\alpha h_{1}}x^{T}(t) + x(t-h_{1})\Phi_{4}h_{2}e^{-2\alpha h_{1}}x^{T}(t) \\ &+ \frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s)ds\Phi_{7}h_{1}e^{-2\alpha h_{1}}x^{T}(t) + x(t)\Phi_{2}h_{1}e^{-2\alpha h_{1}}x^{T}(t-h_{1}) \\ &+ x(t-h_{1})\Phi_{5}h_{1}e^{-2\alpha h_{1}}x^{T}(t-h_{1}) + \frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s)ds\Phi_{8}h_{1}e^{-2\alpha h_{1}}x^{T}(t-h_{1}) \\ &+ x(t)\Phi_{3}h_{1}e^{-2\alpha h_{1}} \left(\frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s)ds \right)^{T} + x(t-h_{1})\Phi_{6}h_{1}e^{-2\alpha h_{1}} \left(\frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s)ds \right)^{T} \\ &+ \frac{1}{h_{2}} \int_{t-h_{2}}^{t} x(s)ds\Phi_{9}h_{1}e^{-2\alpha h_{1}} \left(\frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s)ds \right)^{T} \\ &+ x(t-h_{2})\Psi_{5}h_{2}e^{-2\alpha h_{2}}x^{T}(t-h_{2}) + \frac{1}{h_{2}} \int_{t-h_{2}}^{t} x(s)ds\Psi_{8}h_{2}e^{-2\alpha h_{2}}x^{T}(t-h_{2}) \\ &+ x(t-h_{2})\Psi_{5}h_{2}e^{-2\alpha h_{2}} \left(\frac{1}{h_{2}} \int_{t-h_{2}}^{t} x(s)ds \right)^{T} + x(t-h_{2})\Psi_{6}h_{2}e^{-2\alpha h_{2}} \left(\frac{1}{h_{2}} \int_{t-h_{2}}^{t} x(s)ds \right)^{T} \end{split}$$

$$+ \frac{1}{h_2} \int_{t-h_2}^t x(s) ds \Psi_9 h_2 e^{-2\alpha h_2} \left(\frac{1}{h_2} \int_{t-h_2}^t x(s) ds \right)^T \\ + (h_2 - h_1)^2 \dot{x}^T(t) U \dot{x}(t) + x(t - h_1)(h_2 - h_1) e^{-2\alpha h_2} \Omega_1 x^T(t - h_1) \\ + x(t - h_2)(h_2 - h_1) e^{-2\alpha h_2} \Omega_4 x^T(t - h_1) \\ + \frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds(h_2 - h_1) e^{-2\alpha h_2} \Omega_7 x^T(t - h_1) \\ + x(t - h_1)(h_2 - h_1) e^{-2\alpha h_2} \Omega_2 x^T(t - h_2) \\ + x(t - h_2)(h_2 - h_1) e^{-2\alpha h_2} \Omega_5 x^T(t - h_2) \\ + \frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds(h_2 - h_1) e^{-2\alpha h_2} \Omega_8 x^T(t - h_2) \\ + x(t - h_1)(h_2 - h_1) e^{-2\alpha h_2} \Omega_3 \left(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds \right)^T \\ + x(t - h_2)(h_2 - h_1) e^{-2\alpha h_2} \Omega_6 \left(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds \right)^T \\ + x(t - h_2)(h_2 - h_1) e^{-2\alpha h_2} \Omega_6 \left(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds \right)^T$$

$$+ \frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds(h_2 - h_1) e^{-2\alpha h_2} \Omega_9 \left(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds \right)^T. \quad (3.3)$$

By using the following identity relation

$$\dot{x}(t) - Ax(t) - Dx(t - h(t)) = 0,$$

we have

$$\begin{aligned} &2x^{T}(t)S_{1}\dot{x}(t)-2x^{T}(t)S_{1}Ax(t)-2x^{T}(t)S_{1}Dx(t-h(t))=0\\ &2x^{T}(t-h_{1})S_{2}\dot{x}(t)-2x^{T}(t-h_{1})S_{2}Ax(t)-2x^{T}(t-h_{1})S_{2}Dx(t-h(t))=0\\ &2x^{T}(t-h_{2})S_{3}\dot{x}(t)-2x^{T}(t-h_{2})S_{3}Ax(t)-2x^{T}(t-h_{2})S_{3}Dx(t-h(t))=0\\ &2x^{T}(t-h(t))S_{4}\dot{x}(t)-2x^{T}(t-h(t))S_{4}Ax(t)-2x^{T}(t-h(t))S_{4}Dx(t-h(t))=0\\ &2\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T}S_{5}\dot{x}(t)-2\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T}S_{5}Ax(t)\\ &-2\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T}S_{6}\dot{x}(t)-2\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T}S_{6}Ax(t)\\ &-2\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T}S_{6}Dx(t-h(t))=0\\ &2\left(\frac{1}{h_{2}}-h_{1}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T}S_{7}\dot{x}(t)-2\left(\frac{1}{h_{2}}-h_{1}\int_{t-h_{2}}^{t-h_{2}}x(s)ds\right)^{T}S_{7}Ax(t)\\ &-2\left(\frac{1}{h_{2}}-h_{1}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T}S_{7}Dx(t-h(t))=0.\\ &2\dot{x}^{T}(t)S_{8}\dot{x}(t)-2\dot{x}^{T}(t)S_{8}Ax(t)-2\dot{x}^{T}(t)S_{8}Dx(t-h(t))=0. \end{aligned}$$

 $\dot{V}(.) + 2\alpha V(.)$

$$\begin{split} &\leq x^{T} \Big[A^{T} P + PA + 2Q - h_{1} e^{-2ah_{1}} \Phi_{1} - h_{2} e^{-2ah_{2}} \Psi_{1} - (S_{1}A + A^{T}S_{1}^{T}) \Big] x(t) \\ &+ x^{T}(t) \Big[-h_{1} e^{-2ah_{1}} \Phi_{4} - S_{2}A \Big] x(t-h_{1}) + x^{T}(t) \Big[-h_{2} e^{-2ah_{1}} \Psi_{4} - S_{3}A \Big] x(t-h_{2}) \\ &+ x^{T} \Big[PD - S_{1}D - S_{4}D \Big] x(t-h(t)) + x^{T}(t) \Big[-h_{1} e^{-2ah_{1}} \Phi_{7} - S_{5}A \Big] \frac{1}{h_{1}} \int_{t-h_{1}}^{t-h_{1}} x(s) ds \\ &+ x^{T}(t) \Big[-h_{2} e^{-2ah_{2}} \Psi_{7} - S_{6}A \Big] \frac{1}{h_{2}} \int_{t-h_{2}}^{t} x(s) ds + x^{T}(t) \Big[-S_{7}A \Big] \frac{1}{h_{2} - h_{1}} \int_{t-h_{2}}^{t-h_{1}} x(s) ds \\ &+ x^{T}(s - S_{8}A] \dot{x}(t) + x^{T}(t-h_{1}) \Big[-h_{1} e^{-2ah_{1}} \Phi_{2} - S_{2}A \Big] x(t) \\ &+ x^{T}(t-h_{1}) \Big[2e^{-2ah_{2}} Q - h_{1} e^{-2ah_{2}} \Phi_{5} - (h_{2} - h_{1}) e^{-2ah_{2}} \Omega_{1} \Big] x(t-h_{1}) \\ &+ x^{T}(t-h_{1}) \Big[-(h_{2} - h_{1}) e^{-2ah_{2}} \Phi_{4} - (0.5) (e^{2ah_{1}} + e^{2ah_{2}} Q) \Big] x(t-h_{2}) \\ &+ x^{T}(t-h_{1}) \Big[-S_{2}D \Big] x(t-h(t)) + x^{T}(t-h_{1}) \Big[-h_{1} e^{-2ah_{2}} \Phi_{8} \Big] \frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \\ &+ x^{T}(t-h_{1}) \Big[-(h_{2} - h_{1}) e^{-2ah_{2}} \Omega_{7} \Big] \frac{1}{h_{2} - h_{1}} \int_{t-h_{2}}^{t-h_{1}} x(s) ds \\ &+ x^{T}(t-h_{2}) \Big[-(h_{2} - h_{1}) e^{-2ah_{2}} \Omega_{7} \Big] \frac{1}{h_{2} - h_{1}} \int_{t-h_{2}}^{t-h_{1}} x(s) ds \\ &+ x^{T}(t-h_{2}) \Big[-(h_{2} - h_{1}) e^{-2ah_{2}} \Omega_{7} \Big] \frac{1}{h_{2} - h_{1}} \int_{t-h_{2}}^{t-h_{1}} x(s) ds \\ &+ x^{T}(t-h_{2}) \Big[-(h_{2} - h_{1}) e^{-2ah_{2}} \Omega_{7} \Big] \frac{1}{h_{2} - h_{1}} \int_{t-h_{2}}^{t-h_{2}} x(s) ds \\ &+ x^{T}(t-h_{2}) \Big[-(h_{2} - h_{1}) e^{-2ah_{2}} \Omega_{9} \Big] \frac{1}{h_{2} - h_{1}} \int_{t-h_{2}}^{t-h_{2}} x(s) ds \\ &+ x^{T}(t-h_{2}) \Big[-(h_{2} - h_{1}) e^{-2ah_{2}} \Omega_{9} \Big] \frac{1}{h_{2} - h_{1}} \int_{t-h_{2}}^{t-h_{2}} x(s) ds \\ &+ x^{T}(t-h_{2}) \Big[-(h_{2} - h_{1}) e^{-2ah_{2}} \Omega_{8} \Big] \frac{1}{h_{2} - h_{1}} \int_{t-h_{2}}^{t-h_{2}} x(s) ds \\ &+ x^{T}(t-h_{2}) \Big[-(h_{2} - h_{1}) e^{-2ah_{2}} \Omega_{8} \Big] \frac{1}{h_{2} - h_{1}} \int_{t-h_{2}}^{t-h_{2}} x(s) ds \\ &+ x^{T}(t-h_{2}) \Big[-h_{2} e^{-2ah_{2}} \Omega_{8} \Big] \frac{1}{h_{2} - h_{1}} \int_{t-h_{2}}^{t-h_{2}} x(s) ds \\ &+ x^{T}(t-h_{2}) \Big] \Big[-h_{2} e^{$$

$$\begin{split} &+ \Big(\frac{1}{h_2} \int_{t-h_2}^t x(s) ds\Big)^T \Big[-h_2 e^{-2\alpha h_2} \Psi_6 \Big] x(t-h_2) \\ &+ \Big(\frac{1}{h_2} \int_{t-h_2}^t x(s) ds\Big)^T [-S_6 D] x(t-h(t)) \\ &+ \Big(\frac{1}{h_2} \int_{t-h_2}^t x(s) ds\Big)^T \Big[-h_2 e^{-2\alpha h_2} \Psi_9 \Big] \Big(\frac{1}{h_2} \int_{t-h_2}^t x(s) ds\Big) \\ &+ \Big(\frac{1}{h_2} \int_{t-h_2}^t x(s) ds\Big)^T [S_6] \dot{x}(t) + \Big(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds\Big)^T [-S_7] x(t) \\ &+ \Big(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds\Big)^T [-(h_2 - h_1) e^{-2\alpha h_2} \Omega_3] x(t-h_1) \\ &+ \Big(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds\Big)^T \Big[-(h_2 - h_1) e^{-2\alpha h_2} \Omega_6 \Big] x(t-h_2) \\ &+ \Big(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds\Big)^T [-(h_2 - h_1) e^{-2\alpha h_2} \Omega_9] \Big(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds\Big) \\ &+ \Big(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds\Big)^T [S_7] \dot{x}(t) \\ &+ \Big(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds\Big)^T [S_7] \dot{x}(t) \\ &+ \dot{x}^T(t) [-S_8 A + S_1] x(t) + \dot{x}^T(t) [S_2] x(t-h_1) + \dot{x}^T(t) [S_3] x(t-h_2) \\ &+ \dot{x}^T(t) [-S_8 D + S_4] x(t-h(t)) + \dot{x}^T(t) S_7 \Big(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds\Big) \\ &+ \dot{x}^T(t) \Big[(h_1^2 + h_2^2) R + (h_2 - h_1)^2 U + S_8 + S_8^T \Big] \dot{x}(t) \\ &= \xi^T(t) J\xi(t). \end{split}$$

where

$$\xi(t) = \left[x(t), x(t-h_2), x(t-h_2), x(t-h(t)), \frac{1}{h_1} \int_{t-h_1}^t x(s) ds, \frac{1}{h_2} \int_{t-h_2}^t x(s) ds, \frac{1}{h_2 - h_2} \int_{t-h_2}^{t-h_1} x(s) ds, \dot{x}(t) \right].$$
According to condition (3.1), we obtain

According to condition (3.1), we obtain

$$\dot{V}(t, x_t) + 2\alpha V(t, x_t) \le 0$$

$$\dot{V}(t, x_t) \le -2\alpha V(t, x_t), \quad \forall t \in \mathbb{R}^+.$$
(3.5)

From (3.5), we have

$$\dot{V}(t, x_t) = -2\alpha V(t, x_t)$$

$$\frac{dV}{dt}(t, x_t) = -2\alpha V(t, x_t)$$
(3.6)

By interesting both system of (3.6), we obtain

$$\int_0^t (\frac{1}{V}) \frac{dV}{dt} dt = \int_0^t (-2\alpha) dt$$

$$\begin{aligned} \ln(V(t))|_{0}^{t} &= (-2\alpha(t))|_{0}^{t} \\ \ln(V(t)) - \ln(V(0)) &= -2\alpha(t) - 2\alpha(0) \\ \ln \frac{V(t)}{V(0)} &= -2\alpha t \\ \frac{V(t)}{V(0)} &= e^{-2\alpha t} \\ V(t) &= V(o)e^{-2\alpha t} \\ \therefore V(t, x_{t}) &\leq V(\phi)e^{-2\alpha t}, \quad \forall t \in R^{+} \\ \end{aligned}$$
From $\lambda_{\min} \|x(t)\|^{2} \leq V(t, x_{t}) \leq \lambda_{\max} \|x(t)\|^{2} \\ \lambda_{1} \|x(t, \phi)\|^{2} \leq V(x_{t}) \leq V(\phi)e^{-2\alpha t} \leq \lambda_{2}e^{-2\alpha t} \|\phi\|^{2} \\ \|x(t, \phi)\|^{2} \leq \frac{\lambda_{2}e^{-2\alpha t} \|\phi\|^{2}}{\lambda_{1}} \\ &\leq \frac{\lambda_{2}}{\lambda_{1}}e^{-2\alpha t} \|\phi\|^{2}. \end{aligned}$
Then, we have

$$\begin{aligned} \|x(t,\phi)\| &\leq \sqrt{\left(\frac{\lambda_2}{\lambda_1}\right)}e^{-2\alpha t} \|\phi\|^2 \\ &\leq \sqrt{\frac{\lambda_2}{\lambda_1}}e^{-\alpha t} \|\phi\|, \quad t \in R^+. \end{aligned}$$

From definition 2.1, we concludes that the zero equation of system(1) is α exponentially stable.

Next, we consider the following uncertain linear systems with interval time-varying delay:

$$\dot{x}(t) = [A + \Delta A(t)]x(t) + [D + \Delta D(t)]x(t - h(t)), t \in R^+,$$

$$x(t) = \phi(t), t \in [h_2, 0]$$
(2)

where the time-varying uncertain matrices $\Delta A(t)$, $\Delta D(t)$ are given by :

$$\Delta A(t) = E_a F_a(t) H_a, \Delta D(t) = E_d F_d(t) H_d$$

and E_a, E_d, H_a, H_d are known constant matrices with appropriate dimensions, ${\cal F}_a, {\cal F}_d$ are unknown uncertain matrices satisfying

$$F_a^T(t)F_a(t) \le I, F_d^T(t)F_a(t) \le I, t \in \mathbb{R}^+.$$

The following notations will be used throughout this paper.

$$\begin{split} M_{11} &= A^T P + P A + 2Q - h_1 e^{-2\alpha h_1} \Phi_1 - h_2 e^{-2\alpha h_2} \Psi_1 + H_a^T H_a + H_a^T H_a, \\ M_{12} &= -h_1 e^{-2\alpha h_1} \Phi_4, \\ M_{13} &= -h_2 e^{-2\alpha h_2} \Psi_4, \\ M_{14} &= J_{41} = P D + 0.5 + H_d^T H_d - \bar{S}_1 A, \end{split}$$

$$\begin{split} &M_{15} = -h_1 e^{-2\alpha h_1} \Phi_7, \\ &M_{16} = -h_2 e^{-2\alpha h_2} \Psi_7, \\ &M_{17} = J_{71} = 0, \\ &M_{18} = J_{81} = -\bar{S}_2 A, \\ &M_{21} = -h_1 e^{-2\alpha h_1} \Psi_2, \\ &M_{22} = e^{2\alpha h_1} Q - h_1 e^{-2\alpha h_1} \Phi_5 - (h_2 - h_1) e^{-2\alpha h_2} \Omega_1, \\ &M_{23} = -(h_2 - h_1) e^{-2\alpha h_2} \Omega_4, \\ &M_{24} = J_{42} = 0, \\ &M_{25} = -h_1 e^{-2\alpha h_1} \Phi_8, \\ &M_{26} = J_{62} = 0, \\ &M_{27} = -(h_2 - h_1) e^{-2\alpha h_2} \Omega_7, \\ &M_{28} = J_{82} = 0, \\ &M_{31} = -h_2 e^{-2\alpha h_2} \Psi_2, \\ &M_{32} = -(h_2 - h_1) e^{-2\alpha h_2} \Omega_2, \\ &M_{33} = -e^{-2\alpha h_2} Q - h_2 e^{-2\alpha h_2} \Psi_5 - (h_2 - h_1) e^{-2\alpha h_2} \Omega_5, \\ &M_{34} = J_{43} = 0, \\ &M_{35} = J_{53} = 0, \\ &M_{36} = -h_2 e^{-2\alpha h_2} \Psi_8, \\ &M_{37} = -(h_2 - h_1) e^{-2\alpha h_2} \Omega_8, \\ &M_{38} = J_{83} = 0, \\ &M_{44} = -2S_4 D = H_d^T H_d + H_d^T H_d + H_d^T H_d, \\ &M_{45} = J_{54} = 0, \\ &M_{46} = J_{64} = 0, \\ &M_{47} = J_{74} = 0, \\ &M_{48} = J_{84} = \bar{S}_1, \\ &M_{51} = -h_1 e^{-2\alpha h_1} \Phi_5, \\ &M_{55} = -h_1 e^{-2\alpha h_1} \Phi_9, \\ &M_{56} = J_{65} = 0, \\ &M_{57} = J_{75} = 0, \\ &M_{58} = J_{85} = 0, \\ \end{aligned}$$

$$M_{61} = -h_2 e^{-2\alpha h_2} \Psi_3,$$

$$M_{63} = -h_2 e^{-2\alpha h_2} \Psi_6,$$

$$M_{66} = -h_2 e^{-2\alpha h_2} \Psi_9,$$

$$M_{67} = J_{76} = 0,$$

$$M_{68} = 0,$$

$$M_{72} = -(h_2 - h_1) e^{-2\alpha h_2} \Omega_3,$$

$$M_{73} = -(h_2 - h_1) e^{-2\alpha h_2} \Omega_6,$$

$$M_{77} = -(h_2 - h_1) e^{-2\alpha h_2} \Omega_9,$$

$$M_{78} = J_{87} = 0,$$

$$M_{88} = (h_1^2 + h_2^2) R + (h_2 - h_1)^2 U + \bar{S}_2 + \bar{S}_2^T + H_d^T H_d + H_d^T H_d,$$
Where $R = 0$ of the set of Theorem 1 of the set of (2) is

Theorem 3.2 Given $\alpha > 0$ The zero solution of the system (2) is α exponentially stable if there exist symmetric positive definite matrices P, Q, R, U, and any matrices $\overline{S}_i, i = 1, 2$ such that the following LMI hold

$$\mathcal{M}_{1} = \begin{bmatrix}
\mathcal{M}_{11} & \mathcal{M}_{12} & \mathcal{M}_{13} & \mathcal{M}_{14} & \mathcal{M}_{15} & \mathcal{M}_{16} & \mathcal{M}_{17} & \mathcal{M}_{18} \\
* & \mathcal{M}_{22} & \mathcal{M}_{23} & \mathcal{M}_{24} & \mathcal{M}_{25} & \mathcal{M}_{26} & \mathcal{M}_{27} & \mathcal{M}_{28} \\
* & * & \mathcal{M}_{33} & \mathcal{M}_{34} & \mathcal{M}_{35} & \mathcal{M}_{36} & \mathcal{M}_{37} & \mathcal{M}_{38} \\
* & * & * & \mathcal{M}_{44} & \mathcal{M}_{45} & \mathcal{M}_{46} & \mathcal{M}_{47} & \mathcal{M}_{48} \\
* & * & * & * & \mathcal{M}_{55} & \mathcal{M}_{56} & \mathcal{M}_{57} & \mathcal{M}_{58} \\
* & * & * & * & * & \mathcal{M}_{66} & \mathcal{M}_{67} & \mathcal{M}_{68} \\
* & * & * & * & * & * & \mathcal{M}_{77} & \mathcal{M}_{78} \\
* & * & * & * & * & * & \mathcal{M}_{88}
\end{bmatrix} < 0, \quad (3.7)$$

$$\mathcal{M}_{2} = \begin{bmatrix}
2PA & PE_{a} & PE_{d} & \bar{S}_{1}E_{a} & \bar{S}_{2}E_{a} \\
* & -I & 0 & 0 & 0 \\
* & * & * & -I & 0 \\
* & * & * & -I & 0 \\
* & * & * & * & -I
\end{bmatrix} < 0, \quad (3.8)$$

$$\mathcal{M}_{3} = \begin{bmatrix}
-2\bar{S}_{1}D & \bar{S}_{1}E_{d} & \bar{S}_{2}E_{d} \\
* & -I & 0 \\
* & * & -I
\end{bmatrix} < 0, \quad (3.9)$$

Proof We consider the following Lyapunov - Krasovskii functional for the system (2)

$$\begin{split} V(t,x_t) &= \sum_{i=1}^{7} V_i \,, \\ \text{By taking the derivative of } V_1 \text{ along the solution of system (2) we have} \\ \dot{V}_1 &= x^T(t) \frac{d}{dt} Px(t) + \frac{d}{dt} x^T(t) Px(t) \\ &= x^T(t) P\dot{x}(t) + \dot{x}^T(t) Px(t) \\ &= 2x^T(t) P\dot{x}(t) \\ &= 2x^T(t) P[(A + \Delta A(t))x(t) + (D + \Delta D(t)x(t - h(t))] \\ &= 2x^T(t) P[Ax(t) + \Delta A(t)x(t) + Dx(t - h(t) + \Delta D(t)x(t - h(t))] \\ &= 2x^T(t) PAx(t) + 2x^T(t) P\Delta A(t)x(t) + 2x^T(t) PDx(t - h(t)) \\ &+ 2x^T(t) P\Delta D(t)x(t - h(t)) \\ &= x^T(t) P\Delta D(t)x(t - h(t)) \\ &= x^T(t) P\Delta V(t) + x^T(t) PAx(t) + x^T(t) P\Delta A(t)x(t) + x^T(t) P\Delta A(t)x(t) \\ &+ x^T(t) PDx(t - h(t)) + x^T(t) PDx(t - h(t)) + x^T(t) P\Delta D(t)x(t - h(t)) \\ &+ x^T(t) P\Delta D(t)x(t - h(t)) \\ &= x^T(t) [PA + A^T P]x(t) + x^T(t) [P\Delta A(t) \\ &+ \Delta A^T P]x(t) + x^T(t) [PD + D^T P]x(t - h(t)) + x^T(t) [P\Delta D \\ &+ \Delta D^T P](t)x(t - h(t)) \\ &= x^T(t) [PA + A^T P]x(t) + x^T(t) [PE_a F_a(t) H_a + PH_a^T F_a^T(t) E_a^T]x(t) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &= x^T(t) [PA + A^T P]x(t) + x^T(t) [PE_a P_a(t) H_a + PH_a^T F_a^T(t) E_a^T]x(t) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &= x^T(t) [PA + A^T P]x(t) + x^T(t) [PE_a P_a(t) PE_a P_a(t) + H_a^T H_a]x(t) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &= x^T(t) [PA + A^T P]x(t) + x^T(t) [PE_a P_a(t) + H_a^T H_a]x(t) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)) \\ &+ x^T(t) [PD + D^T P]x(t - h(t)] \\ &+ x^T(t) [PD + D^T P]x(t - h(t)] \\ &+ x^T(t) [PD + D^T P]x(t - h(t)] \\ &+ x^T(t) [PD + D^T P]x(t - h(t)] \\ &+ x^T(t) [PD + D^T P]x(t - h(t)] \\ &+ x^T(t) [PD + D^T P]x(t - h(t)] \\ &+ x^T(t) [PD + D^T P]x(t - h(t)] \\ &+ x^T(t) [PD + D^T P]x(t - h(t)] \\ &+ x^T(t) [PD + D^T P]x(t - h(t)] \\ &+ x^T(t) [PD + D^T P]x(t - h(t)] \\ &+ x^T(t$$

$$\begin{split} \dot{V}_{5} &= \frac{d}{dt} \Big(h_{1} e^{-2\alpha t} \int_{-h_{1}}^{0} \int_{t+s}^{t} e^{2\alpha \tau} \dot{x}^{T}(\tau) R\dot{x}(\tau) d\tau ds \Big) \\ &\leq h_{1}^{2} \dot{x}^{T}(t) R\dot{x}(t) + x(t) \Phi_{1} h_{1} e^{-2\alpha h_{1}} x^{T}(t) + x(t-h_{1}) \Phi_{4} h_{2} e^{-2\alpha h_{1}} x^{T}(t) \\ &+ \frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \Phi_{7} h_{1} e^{-2\alpha h_{1}} x^{T}(t) + x(t) \Phi_{2} h_{1} e^{-2\alpha h_{1}} x^{T}(t-h_{1}) \\ &+ x(t-h_{1}) \Phi_{5} h_{1} e^{-2\alpha h_{1}} x^{T}(t-h_{1}) + \frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \Phi_{8} h_{1} e^{-2\alpha h_{1}} x^{T}(t-h_{1}) \\ &+ x(t) \Phi_{3} h_{1} e^{-2\alpha h_{1}} \left(\frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \right)^{T} + x(t-h_{1}) \Phi_{6} h_{1} e^{-2\alpha h_{1}} \left(\frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \right)^{T} \\ &+ \frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \Phi_{9} h_{1} e^{-2\alpha h_{1}} \left(\frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \right)^{T} - 2\alpha V_{5} , \quad (3.14) \\ \dot{V}_{6} &= h_{2} e^{-2\alpha t} \int_{-h_{2}}^{0} \int_{t-s}^{t} e^{2\alpha \tau} \dot{x}^{T}(\tau) R\dot{x}(\tau) d\tau ds \\ &\leq h_{2}^{2} \dot{x}^{\tau}(t) R\dot{x}(t) + x(t) \Psi_{1} h_{2} e^{-2\alpha h_{2}} x^{T}(t) + x(t-h_{2}) \Psi_{4} h_{2} e^{-2\alpha h_{2}} x^{T}(t) \\ &+ \frac{1}{h_{2}} \int_{t-h_{2}}^{t} x(s) ds \Psi_{7} h_{2} e^{-2\alpha h_{2}} x^{T}(t) + x(t) \Psi_{2} h_{2} e^{-2\alpha h_{2}} x^{T}(t-h_{2}) \\ &+ x(t-h_{2}) \Psi_{5} h_{2} e^{-2\alpha h_{2}} x^{T}(t-h_{2}) + \frac{1}{h_{2}} \int_{t-h_{2}}^{t} x(s) ds \Psi_{8} h_{2} e^{-2\alpha h_{2}} x^{T}(t-h_{2}) \\ &+ x(t) \Psi_{3} h_{2} e^{-2\alpha h_{2}} \frac{1}{h_{2}} \int_{t-h_{2}}^{t} x(s) ds^{T} + x(t-h_{2}) \Psi_{6} h_{2} e^{-2\alpha h_{2}} x^{T}(t-h_{2}) \\ &+ x(t) \Psi_{3} h_{2} e^{-2\alpha h_{2}} \frac{1}{h_{2}} \int_{t-h_{2}}^{t} x(s) ds^{T} - 2\alpha V_{6} , \quad (3.15) \\ \dot{V}_{7} &= (h_{2} - h_{1}) \int_{-h_{3}}^{-h_{1}} \int_{t+s}^{t} e^{2\alpha \tau} e^{-2\alpha h_{2}} \tilde{x}^{T}(\tau) U\dot{x}(\tau) d\tau ds \\ &\leq (h_{2} - h_{1}) \int_{t-h_{2}}^{-h_{1}} x(s) ds(h_{2} - h_{1}) e^{-2\alpha h_{2}} \Omega_{7} x^{T}(t-h_{1}) \\ &+ x(t - h_{2}) (h_{2} - h_{1}) e^{-2\alpha h_{2}} \Omega_{3} x^{T}(t-h_{1}) \\ &+ x(t - h_{3}) (h_{2} - h_{1}) e^{-2\alpha h_{2}} \Omega_{3} x^{T}(t-h_{2}) \\ &+ x(t - h_{3}) (h_{2} - h_{1}) e^{-2\alpha h_{2}} \Omega_{3} \left(\frac{1}{h_{2} - h_{1}} \int_{t-h_{2}}^{t-h_{1}} x(s) ds \right)^{T} \\ &+ x(t - h_{3}) (h_{2} - h_{1}) e^{-2\alpha h_{2}} \Omega_{3} \left(\frac{1}{h_{2} - h_{1}}$$

Hence , we that

$$\begin{split} \dot{V}(.) + 2\alpha V(.) \\ &\leq x^{T}(t) [PA + A^{T}P]x(t) + x^{T}(t) [(PE_{a})(PE_{a})^{T} + H_{a}^{T}H_{a}]x(t) \\ &+ x^{T}(t) [PD + D^{T}P]x(t - h(t)) + x^{T}(t) [(PE_{d})(PE_{d})^{T} \\ &+ H_{d}^{T}H_{d}]x(t - h(t)) + x^{T}Qx(t) - e^{2\alpha h_{1}}x^{T}(t - h_{1}Qx(t - h_{2})) \\ &+ e^{2\alpha h_{1}}x^{T}(t - h_{1}Qx(t - h_{1})) - e^{2\alpha h_{2}}x^{T}(t - h_{2}Qx(t - h_{2})) + h_{1}^{2}\dot{x}^{T}(t)R\dot{x}(t) \\ &- h_{1}e^{-2\alpha h_{1}}\int_{t - h_{1}}^{t}\dot{x}^{T}(s)R\dot{x}(s)ds + h_{2}^{2}\dot{x}^{T}(t)R\dot{x}(t) - h_{2}e^{-2\alpha h_{2}}\int_{t - h_{2}}^{t}\dot{x}^{T}(s)R\dot{x}(s)ds \\ &\leq x^{T}(t) [PA + A^{T}P]x(t) + x^{T}(t) [(PE_{a})(PE_{a})^{T} + H_{a}^{T}H_{a}]x(t) \\ &+ x^{T}(t) [PD + D^{T}P]x(t - h(t)) + x^{T}(t) [(PE_{d})(PE_{d})^{T} \\ &+ H_{d}^{T}H_{d}]x(t - h(t)) + x^{T}Qx(t) \\ &- e^{2\alpha h_{1}}x^{T}(t - h_{1}Qx(t - h_{2})) + e^{2\alpha h_{1}}x^{T}(t) + x(t) \Phi_{1}h_{2}e^{-2\alpha h_{1}}x^{T}(t) \\ &+ h_{1}^{2}\dot{x}^{T}(t)R\dot{x}(t) + x(t)\Phi_{1}h_{1}e^{-2\alpha h_{1}}x^{T}(t) + x(t)\Phi_{2}h_{1}e^{-2\alpha h_{1}}x^{T}(t) \\ &+ h_{1}^{2}\dot{x}^{T}(t)R\dot{x}(t) + x(t)\Phi_{1}h_{1}e^{-2\alpha h_{1}}x^{T}(t) + x(t)\Phi_{2}h_{1}e^{-2\alpha h_{1}}x^{T}(t - h_{1}) \\ &+ x^{T}(t) [PA + A^{T}P]x(t) + x^{T}(t) + x(t)\Phi_{2}h_{1}e^{-2\alpha h_{1}}x^{T}(t - h_{1}) \\ &+ x^{T}(t) [PA + D^{T}P]x(t - h(t)) + x^{T}Qx(t) \\ &- e^{2\alpha h_{1}x^{T}}(t - h_{1}Qx(t - h_{2})) \\ &+ h_{1}^{2}\dot{x}^{T}(t)R\dot{x}(t) + x(t)\Phi_{1}h_{1}e^{-2\alpha h_{1}}x^{T}(t) + x(t)\Phi_{2}h_{1}e^{-2\alpha h_{1}}x^{T}(t) \\ &+ \frac{1}{h_{1}}\int_{t - h_{1}}^{t}(s)ds\Phi_{7}h_{1}e^{-2\alpha h_{1}}x^{T}(t) + x(t)\Phi_{2}h_{1}e^{-2\alpha h_{1}}x^{T}(t - h_{1}) \\ &+ x(t)\Phi_{3}h_{1}e^{-2\alpha h_{1}}\left(\frac{1}{h_{1}}\int_{t - h_{1}}^{t}x(s)ds\right)^{T} \\ &+ \frac{1}{h_{1}}\int_{t - h_{2}}^{t}(s)ds\Psi_{7}h_{2}e^{-2\alpha h_{2}}x^{T}(t) + x(t)\Psi_{2}h_{2}e^{-2\alpha h_{2}}x^{T}(t - h_{2}) \\ &+ x(t)\Phi_{3}h_{2}e^{-2\alpha h_{2}}x^{T}(t - h_{2}) + \frac{1}{h_{2}}\int_{t - h_{2}}^{t}x(s)ds\right)^{T} \\ &+ \frac{1}{h_{2}}\int_{t - h_{2}}^{t}(s)ds\Psi_{9}h_{2}e^{-2\alpha h_{2}}x^{T}(t) + x(t)\Psi_{2}h_{2}e^{-2\alpha h_{2}}x^{T}(t - h_{2}) \\ &+ x(t - h_{2})\Psi_{5}h_{2}e^{-2\alpha h_{2}}x^{T}(t - h_{2}) + \frac{1}{h_{2}}\int_{t - h_{2}}^{t}x(s)ds\right)^{T} \\ &+ \frac{1}{h_{2}}\int_{t - h_{2}}^{t}(s)ds\Psi_{9}h_{2}$$

$$+\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{8}x^{T}(t-h_{2})$$

$$+x(t-h_{1})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{3}\left(\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T}$$

$$+x(t-h_{2})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{6}\left(\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T}$$

$$+\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{9}\left(\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T}$$
(3.17)

By using the following identity relation

$$\dot{x}(t) - [A - \Delta A(t)]x(t) + [D - \Delta D(t)]x(t - h(t)) = 0 ,$$

we have

$$-2x^{T}(t)S_{1}\dot{x}(t) + 2x^{T}(t)S_{1}[A + \Delta A(t)]x(t) +2x^{T}S_{1}[D + \Delta D(t)]x(t - h(t)) = 0$$
(3.18)

$$2x^{T}(t-h(t))S_{4}\dot{x}(t) - 2x^{T}(t-h(t))S_{4}[A+\Delta A(t)]x(t) -2x^{T}(t-h(t))S_{4}[D+\Delta D(t)]x(t-h(t)) = 0$$
(3.19)

$$-2\dot{x}^{T}(t)S_{4}[D+\Delta D(t)]\dot{x}(t-h(t)) = 0$$

$$2\dot{x}^{T}(t)S_{8}\dot{x}(t) - 2\dot{x}^{T}(t)S_{8}[A+\Delta A(t)]x(t)$$
(3.19)

$$-2\dot{x}^{T}(t)S_{8}[D+\Delta D(t)]x(t-h(t)) = 0$$
(3.20)

$$\begin{split} & \text{From } (3.17), (3.18), (3.19) \text{ and } (3.20) \text{ , we have} \\ & \dot{V} + 2\alpha V \leq x^{T}(t) [PA + A^{T}P]x(t) + x^{T}(t) [(PE_{a})(PE_{a})^{T} + H_{a}^{T}H_{a}]x(t) \\ & + x^{T}(t) [PD + D^{T}P]x(t-h(t)) + x^{T}(t) [(PE_{d})(PE_{d})^{T} \\ & + H_{d}^{T}H_{d}]x(t-h(t)) + x^{T}Qx(t) \\ & - e^{2\alpha h_{1}}x^{T}\left(t-h_{1}Qx(t-h_{2})\right) + e^{2\alpha h_{1}}x^{T}\left(t-h_{1}Qx(t-h_{1})\right) \\ & - e^{2\alpha h_{2}}x^{T}\left(t-h_{2}Qx(t-h_{2})\right) \\ & + h_{1}^{2}\dot{x}^{T}(t)R\dot{x}(t) + x(t)\Phi_{1}h_{1}e^{-2\alpha h_{1}}x^{T}(t) + x(t-h_{1})\Phi_{4}h_{2}e^{-2\alpha h_{1}}x^{T}(t) \\ & + \frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\Phi_{7}h_{1}e^{-2\alpha h_{1}}x^{T}(t) + x(t)\Phi_{2}h_{1}e^{-2\alpha h_{1}}x^{T}(t-h_{1}) \\ & + x(t-h_{1})\Phi_{5}h_{1}e^{-2\alpha h_{1}}x^{T}(t-h_{1}) + \frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\Phi_{8}h_{1}e^{-2\alpha h_{1}}x^{T}(t-h_{1}) \\ & + x(t)\Phi_{3}h_{1}e^{-2\alpha h_{1}}\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T} + x(t-h_{1})\Phi_{6}h_{1}e^{-2\alpha h_{1}}\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T} \\ & + \frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\Phi_{9}h_{1}e^{-2\alpha h_{2}}x^{T}(t) + x(t)\Psi_{2}h_{2}e^{-2\alpha h_{2}}x^{T}(t-h_{2}) \\ & + x(t-h_{2})\Psi_{5}h_{2}e^{-2\alpha h_{2}}x^{T}(t-h_{2}) + \frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\Psi_{8}h_{2}e^{-2\alpha h_{2}}x^{T}(t-h_{2}) \end{split}$$

$$\begin{split} &+x(t)\Psi_{3}h_{2}e^{-2\alpha h_{2}}\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T}+x(t-h_{2})\Psi_{6}h_{2}e^{-2\alpha h_{2}}\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T} \\ &+\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\Psi_{9}h_{2}e^{-2\alpha h_{2}}\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T} \\ &+(h_{2}-h_{1})^{2}\dot{x}^{T}(t)U\dot{x}(t)+x(t-h_{1})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{1}x^{T}(t-h_{1}) \\ &+x(t-h_{2})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{4}x^{T}(t-h_{1}) \\ &+\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{7}x^{T}(t-h_{1}) \\ &+x(t-h_{1})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{2}x^{T}(t-h_{2}) \\ &+x(t-h_{2})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{5}x^{T}(t-h_{2}) \\ &+x(t-h_{2})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{5}x^{T}(t-h_{2}) \\ &+x(t-h_{1})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{3}\left(\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T} \\ &+x(t-h_{2})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{3}\left(\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T} \\ &+2x^{T}(t)S_{1}\dot{x}(t)+2x^{T}(t)S_{1}[A+\Delta A(t)]x(t) \\ &+2x^{T}(t)S_{3}\dot{x}(t)-2x^{T}(t)S_{3}[A+\Delta A(t)]x(t) \\ &-2x^{T}(t-h(t))S_{4}[D+\Delta D(t)]x(t-h(t)) \\ &+2\dot{x}^{T}(t)S_{8}[D+\Delta D(t)]x(t-h(t)) \\ &=\xi^{T}(t)M_{1}\xi(t) \end{aligned}$$

Hence , we have

$$\dot{V}(t, x_t) - 2\alpha V(t, x_t) \le \xi^T(t) M_1 \xi(t) + x^T(t) M_2 x(t) + x^T(t - h(t)) M_3 x(t - h(t))$$
(3.21)

By using the similar approach as in Theorem 3.1 with taking $S_1 = P, S_2 = S_7 = S_6 = S_7 = 0$, $S_4 = \bar{S}_1$, $S_8 = \bar{S}_2$, we obtain

$$S_{3} = S_{5} = S_{6} = S_{7} = 0, S_{4} = S1, S_{8} = S2, \text{ we obtain}$$
$$2PA + PE_{a}E_{a}^{T}P + PE_{a}E_{a}^{T}P + PE_{d}E_{d}^{T}P + \bar{S}_{1}E_{a}E_{a}^{T}\bar{S}_{1} + \bar{S}_{2}E_{a}E_{a}^{T}\bar{S}_{2} < 0$$

By equivalent , we have

$$\mathcal{M}_{2} = \begin{bmatrix} 2PA \ PE_{a} \ PE_{d} \ \bar{S}_{1}E_{a} \ \bar{S}_{2}E_{a} \\ * \ -I \ 0 \ 0 \\ * \ * \ -I \ 0 \ 0 \\ * \ * \ * \ -I \ 0 \\ * \ * \ * \ -I \ 0 \\ * \ * \ * \ * \ -I \end{bmatrix} < 0,$$
(3.22)

$$-2\bar{S}_1D + \bar{S}_1E_dE_d^T\bar{S}_1 + \bar{S}_2E_dE_d^T\bar{S}_2 < 0$$

By equivalent , we have $\begin{tabular}{c} \end{tabular}$

$$\mathcal{M}_{3} = \begin{bmatrix} -2\bar{S}_{1}D & \bar{S}_{1}E_{d} & \bar{S}_{2}E_{d} \\ * & -I & 0 \\ * & * & -I \end{bmatrix} < 0, \qquad (3.23)$$
$$M_{2} = 2PA + PE_{a}E_{a}^{T}P + PE_{d}E_{d}^{T}P + \bar{S}_{1}E_{a}E_{a}^{T}\bar{S}_{1} + \bar{S}_{2}E_{a}E_{a}^{T}\bar{S}_{2} < 0$$
$$M_{3} = -2\bar{S}_{1}D + \bar{S}_{1}E_{d}E_{d}^{T}\bar{S}_{1} + \bar{S}_{2}E_{d}E_{d}^{T}\bar{S}_{2} < 0$$

From (3.21), we have

$$\dot{V}(t, x_t) + 2\alpha V(t, x_t) \leq \xi^T(t) M_1 \xi(t) + x^T(t) M_2 x(t) + x^T(t - h(t)) M_3 x(t - h(t)) \dot{V}(t, x_t) + 2\alpha V(.) \leq \xi^T(t) M_1 \xi(t) \leq 0 \dot{V}(t, x_t) \leq -2\alpha V(t, x_t), \quad \forall t \in \mathbb{R}^+.$$
(3.24)

From (3.24), we have

$$\dot{V}(t, x_t) \leq -2\alpha V(t, x_t)
\frac{dV}{dt}(t, x_t) = -2\alpha V(t, x_t)$$
(3.25)

By interesting both systems of (3.25), we obtain

$$\int_{0}^{t} (\frac{1}{V}) \frac{dV}{dt} dt = \int_{0}^{t} (-2\alpha) dt$$
$$\ln(V(t))|_{0}^{t} = (-2\alpha(t))|_{0}^{t}$$
$$\ln(V(t)) - \ln(V(0)) = -2\alpha(t) - 2\alpha(0)$$
$$\ln \frac{V(t)}{V(0)} = -2\alpha t$$
$$\frac{V(t)}{V(0)} = e^{-2\alpha t}$$
$$V(t) = V(0)e^{-2\alpha t}$$
$$\therefore V(t, x_{t}) \leq V(\phi)e^{-2\alpha t}, \quad \forall t \in \mathbb{R}^{+}$$
From $\lambda_{min} \|x(t)\|^{2} \leq V(t, x_{t}) \leq \lambda_{max} \|x(t)\|^{2}$

27

$$\begin{split} \lambda_1 \|x(t,\phi)\|^2 &\leq V(x_t) \leq V(\phi) e^{-2\alpha t} \leq \lambda_2 e^{-2\alpha t} \|\phi\|^2 \\ \|x(t,\phi)\|^2 &\leq \frac{\lambda_2 e^{-2\alpha t} \|\phi\|^2}{\lambda_1} \\ &\leq \frac{\lambda_2}{\lambda_1} e^{-2\alpha t} \|\phi\|^2 \;. \end{split}$$

Then, we have

$$\begin{aligned} \|x(t,\phi)\| &\leq \sqrt{(\frac{\lambda_2}{\lambda_1})e^{-2\alpha t}} \|\phi\|^2 \\ &\leq \sqrt{\frac{\lambda_2}{\lambda_1}}e^{-\alpha t} \|\phi\|, \quad t \in R^+. \end{aligned}$$

From definition 2.1 , we concludes that the zero equation of system (2) is α -exponentially stable.
CHAPTER 4 Numerical Examples

4.1 Numerical Examples

In the sequel, we illustrate the effectiveness of the proposed method which yields a computationally solution to the exponential stability and robust stability in the context of LMIs.

Example 4.1 Consider the linear system with interval time-varying delay(2.1), where

$$A = \begin{bmatrix} -12.0000 & 0.0000\\ 0.0000 & -19.0000 \end{bmatrix}, D = \begin{bmatrix} -0.0002 & 0.004\\ 0.003 & -0.0005 \end{bmatrix}$$
$$h(t) = 0.1 + 0.4 \mid \sin^2 t \mid .$$

,

It is worth noting that, the delay function h(t) is non - differntiable. By using LMI Toolbox in MATLAB, the LMI (3.1) is feasible with $h_1 = 0.1000, h_2 = 0.5000, \alpha = 3.0000$ and

$$P = \begin{bmatrix} 2.2710 & 0.0097 \\ 0.0097 & 3.0316 \end{bmatrix} \cdot 10^{7}, \qquad Q = \begin{bmatrix} 0.8546 & -0.0011 \\ -0.0011 & 0.7895 \end{bmatrix} \cdot 10^{-13},$$

$$R = \begin{bmatrix} 2.2638 & 0.0001 \\ 0.0001 & 2.2525 \end{bmatrix} \cdot 10^{8}, \qquad U = \begin{bmatrix} 1.1778 & 0.0001 \\ 0.0001 & 1.1853 \end{bmatrix} \cdot 10^{8},$$

$$S_{1} = \begin{bmatrix} -6.6308 & 0.0158 \\ 0.0035 & -2.9118 \end{bmatrix} \cdot 10^{7}, S_{2} = \begin{bmatrix} -1.0084 & -0.0005 \\ -0.0036 & 0.0188 \end{bmatrix},$$

$$S_{3} = \begin{bmatrix} -1.2931 & 0.0020 \\ 0.0041 & -0.6819 \end{bmatrix}, \qquad S_{4} = \begin{bmatrix} -0.1460 & 0.9255 \\ 2.9367 & -0.1563 \end{bmatrix} \cdot 10^{4},$$

$$S_{5} = \begin{bmatrix} -2.2921 & -0.0018 \\ -0.0066 & -1.5879 \end{bmatrix} \cdot 10^{4}, S_{6} = \begin{bmatrix} 24.0437 & -0.0031 \\ -0.0031 & 15.6813 \end{bmatrix},$$

$$S_{7} = \begin{bmatrix} 19.7610 & -0.0017 \\ -0.0017 & 12.8688 \end{bmatrix}, \qquad S_{8} = \begin{bmatrix} 6.4856 & -0.0009 \\ -0.009 & 4.2495 \end{bmatrix} \cdot 10^{7},$$

Moreover, the solution $x(t,\phi)$ of the system satisfies $\|x(t,\phi)\| \leq 7.2093 \cdot 10^{-13} \|\phi\|, \forall t \in R^+ \ .$

The trajectory of the solution of system (1) in has been show in Figure 1.

Figure 4.1: The trajectory of the solution of system (1) in Example 4.1.

Method	0.1	1.0
Zhang et al. (2016) [9]	4.7000	2.2000
Alexandre Seuret [1]	4.7100	2.2400
Hao-Tian Xu et al. [8]	4.6421	2.1630
Liu et al. $[5]$	4.4700	2.3820
Park et al. [6]	4.7800	2.4140
Lee et al. [4]	3.6400	2.4980
Theorem 3.1	4.8215	2.5546

Table 4.1: Maximum allowable upper bounds h_2 of the time-varying delay for different values of the lower bounds h_1 .

Example 4.2 Consider the uncertain linear system with interval timevarying delay(2) with time delay function h(t) with $h_1 = 0.1000, h_2 = 3.1495$ and

$$A = \begin{bmatrix} 0.5 & 1 \\ -1 & -1 \end{bmatrix}, D = \begin{bmatrix} -1 & 0.3 \\ 0.2 & -0.5 \end{bmatrix},$$
$$Ha = \begin{bmatrix} 0.04 & 1 \\ -1 & -1 \end{bmatrix}, Hd = \begin{bmatrix} 0.04 & 1 \\ -1 & -1 \end{bmatrix},$$
$$Ea = \begin{bmatrix} -0.07 & 0.004 \\ 0.005 & 0.075 \end{bmatrix}, Ed = \begin{bmatrix} -0.045 & 0.002 \\ 0.001 & 0.04 \end{bmatrix}.$$
$$h(t) = 0.1 + 0.4 \mid \sin^2 t \mid .$$

By using LMI Toolbox in MATLAB, the LMI (3.2) of theorem 3.2 are feasible with $\alpha = 5$ and $P = \begin{bmatrix} 3.4056 & -1.8341 \\ -1.8341 & 7.1534 \end{bmatrix} \cdot 10^7, \qquad Q = \begin{bmatrix} 0.1700 & -0.0058 \\ -0.0058 & 0.1703 \end{bmatrix} \cdot 10^{-12},$ $R = \begin{bmatrix} 2.2195 & -0.0545 \\ -0.0545 & 2.4783 \end{bmatrix} \cdot 10^8, \qquad U = \begin{bmatrix} 1.0957 & 0.0195 \\ 0.0195 & 0.9966 \end{bmatrix} \cdot 10^8,$

$$\bar{S}_1 = \begin{bmatrix} 0.0903 & -1.6926\\ 0.6436 & -0.4598 \end{bmatrix} \cdot 10^8, \qquad \bar{S}_2 = \begin{bmatrix} 0.1525 & 1.3081\\ 0.1319 & 0.6377 \end{bmatrix} \cdot 10^6.$$

Moreover, the solution $x(t, \phi)$ of the system satisfies

$$||x(t,\phi)|| \le 1.8041 \cdot 10^{-12} ||\phi||, \forall t \in \mathbb{R}^+$$

The trajectory of the solution of system (2) in has been show in Figure 2.

Figure 4.2: The trajectory of the solution of system (2) in Example 4.2.

CHAPTER 5 Conclusions

5.1 Conclusions

In this independent study, new delay-dependent conditions for the exponential stability of linear systems with non-differentiable interval time-varying delay have been derived in terms of solutions of LMIs. By introducing a set of improved Lyapunov-Krasovskii functional and using Free matrix based integral inequality, the conditions for the exponential stability of the systems have been established. In the future work, the Free matrix-based integral inequality may be applied to stability analysis of other systems such as neural network system, fuzzy system and switched system.

BIBLIOGRAPHY

BIBLIOGRAPHY

- Alexandre Seuret, Frederic Gouaisbaut, Allowable delay sets for the stabiliity analysis of linear time-varying delay systems using a delay - dependent reciprocally convex lemma, *IFAC PapersOnLine* 50-1 (2017), 1275-1280.
- [2] O.M. Kwon, Ju H. Park, Delay-range-dependent stabilization of uncertain dynamic systems with interval time-varying delays, *Applied Mathematics and Computation* 208 (2009), 58 - 68.
- [3] W.I. Lee, S.Y. Lee, P. Park, Improved criteria on robust stability and \mathcal{H}_{∞} performance for linear systems with interval time-varying delays via new triple integral functionals, *Applied Mathematics and Computation* 243 (2014), 570 577.
- [4] S.Y.Lee, W.I. Lee, P. Park, Polynomials-based integral inequality for stability of linear systems with time-varying delays, *Journal of the Franklin Institute* 354 (2017), 20532067.
- Y. Liu, L.-S. Hu, P. Shi, A novel approach on stabilization for linear systems with time-varying input delay, *Applied Mathematics and Computation* 218(10) (2012), 5937 - 5947.
- [6] P. Park,W.I. Lee, S.Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, *Journal of* the Franklin Institute 352(4) (2015), 1378 - 1396.
- [7] V.N. Phat, Y. Khongtham, K. Ratchagit, LMI approach exponential stability of linear systems with interval time-varying delays, *Linear Algebra and its Applications* 436 (2012), 243-251.

- [8] H.-T. Xu, C.-K. Zhang, L. Jiang, Jeremy Smith, Stability analysis of linear systems with two additive time-varying delays via delay-product-type Lyapunov functional, *Applied Mathematical Modelling* 45 (2017), 955964.
- [9] C.-K. Zhang, Y. He, L.Jiang, M. Wu, H.-B. Zeng, Stability analysis of systems with time-varying delay via relaxed integral inequalities, *Systems and Control Letters* 92 (2016), 52 - 61.
- [10] J. Zhu, T. Qi, J. Chen, Small-gain stability conditions for linear systems with time-varying delays, Systems and Control Letters 81 (2015), 42 - 48.

APPENDIX

Exponential stability of linear systems with interval time-varying delays using a new bounding technique

K.Nooponta¹, P.Thajeen¹, T.Jankoon¹ and T.La-inchua^{1,*}

¹School of Science, University Of Phayao, Phayao 56000, Thailand *Corresponding author : teerapong.la@up.ac.th

Abstract

This paper study, we investigate exponential stability problem for a class of linear and uncertain linear systems with time-varying delay. The time-delay is assumed to be a continuous function belonging to a given interval, but not necessary to be differentiable. By introduce a set of augmented Lyapunov-Krasovskii functionals combined with the Free-matrix-based integral inequality, new delay-dependent sufficient conditions for the exponential stability of the system is first established in terms of linear matrix inequalities (LMIs). Numerical examples are given to show the effectiveness of our obtained results.

1 Introduction

Time-delay systems are widely used to model concrete systems in engineering sciences, such as biology, chemistry, mechanics and so on. So the stability analysis of time-delay systems strongly requires before experimental stage. As these reason, the stability analysis of time-delay system have been an attractive study research field during the past years.

The derivative of the Lyapunov functional in order to make it easy to handle. Stability analysis of linear systems with time-varying delays $\dot{x}(t) = Ax(t) + Dx(t - h(t))$ is fundamental to many practical problems and has received considerable attention. Most of the known results on this problem are derived assuming only that the time-varying delay h(t) is a continuously differentiable function, satisfying some boundedness condition on its derivative : $h(t) \leq \delta < 1$ In delay-dependent stability criteria, the main concern is to enlarge the feasible region of stability criteria in given time-delay interval. By constructing augmented Lyapunov functionals and utilizing free weight matrices.

Uncertainty is one of the main features of complex and intelligent decision making systems. Various approaches, methods and techniques in this field have been developed for several decades, starting with such concepts and tools as adaptation, stochastic optimization and statistical decision theory. Another category of approaches is based on the functionals with prescribed derivative. The idea is to apply the functional, that is appropriate for a nominal system and does not depend on the uncertainties, for analysis of the uncertain one. Since our approach belongs to this category, we address the issue in more detail below. One of the crucial goals of the theory was to construct a functional that admits a quadratic lower bound what is of paramount importance for robustness analysis in particular. Such functional was derived in was called the functional of complete type. Its derivative depends on the whole state of a system, and this functional particularly was applied in analysis of systems with delay uncertainties, interesting applications of the functional. It is worth mentioning that there exist other definitions of the complete-type functionals, which are also applied in development of the topic. All these functionals came from the functional with a simple derivative $x^{T}(t)Wx(t)$ for which a quadratic lower bound does not exist, here W is a positive definite matrix. There is a certain problem when we apply this simple functional for analysis of uncertain systems: its time-derivative along the solutions of a perturbed system is not negative definite, thus the Krasovskii theorem does not hold.

In this paper, we present a new approach for stability analysis of linear time-invariant systems with delay uncertainties, either constant or time-varying, that is developed applying Free matrix based integral inequality. Motivated by the above discretion, we shall desired new criteria for the exponential stability of systems with interval time-varying non-differentiable delay. By introduction a set of improved Lyapunov functionals combined with the NewtonLeibniz formula, we propose new criteria for the exponential stability of the system. The delay-dependent stability conditions are formulated in terms of LMIs, being thus solvable by utilizing MATLAB LMI Control Toolbox available in the literature to date. The approach allows us to apply in exponential stability of uncertain linear systems with interval time-varying delays.

The independent study is organized as follows: Section 2 presents definitions and some well-known technical propositions needed for the proof of the main results. Delay-dependent exponential stability conditions of the system with illustrative numerical examples are show in Section 4. Section 5 gives the conclusions of the paper.

2 Problem formulation and preliminaries

The following notations will be used in this paper. R^+ denotes the set of all real nonnegative numbers; R^n denotes the n-dimensional space with the scalar product $x^T y$ and the vector norm $\| \cdot \|$; $M^{n \times r}$ denotes the space of all matrices of $(n \times r)$ -dimensions; A^T denotes the transpose of matrix A; A is symmetric if $A = A^T$; I denotes the identity matrix; $\lambda(A)$ denotes the set of all eigenvalues of A; $\lambda_{\min/\max}(A) = \min/\max \{Re\lambda : \lambda \in \lambda(A)\}; x_t := \{x(t+s) : s \in [-h, 0]\},$

 $||x_t|| = \sup_{s \in [-h_2,0]} \{||x(t+s)||\}; C^1([0,t], \mathbb{R}^n)$ denotes the set of all \mathbb{R}^n -valued continuously differentiable functions on [0,t]; Matrix A is called semi-positive definite $(A \ge 0)$ if $\langle Ax, x \rangle \ge 0$, for all $x \in \mathbb{R}^n$; A is positive definite (A > 0) if $\langle Ax, x \rangle > 0$ for all $x \ne 0; A > B$ means A - B > 0; * denotes the symmetric term in a matrix.

Consider a linear system with interval time-varying delay of the form :

$$\dot{x}(t) = Ax(t) + Dx(t - h(t)), \quad t \in R^+ x(t) = \phi(t), t \in [-h_2, 0],$$
(1)

where $x(t) \in \mathbb{R}^n$ is the state $; A, D \in M^{n \times n}$, and $\phi(t) \in C^1([-h_2, 0], \mathbb{R}^n)$ is the initial function with the norm $\| \phi \| = \sup_{-h_2 \leq t \leq 0} \{\| \phi(t) \|, \| \dot{\phi}(t) \|\}$. The time-varying delay function h(t) satisfies

$$0 \le h_1 \le h(t) \le h_2, \quad t \in \mathbb{R}^+.$$

Definition 2.1 Given $\alpha > 0$. The zero solution of system (1) is α -exponentially stable if there exist a positive number N > 0 such that every solution $x(t, \phi)$ satisfies the following condition:

$$|| x(t,\phi) || \le N e^{-\alpha t} || \phi ||, \quad \forall t \in \mathbb{R}^+.$$

We end this section with the following technical well-known propositions, which will be used in the proof of the main results.

Proposition 2.1 (Cauchy inequality). For any symmetric positive definite matrix $N \in M^{n \times n}$ and $a, b \in \mathbb{R}^n$ we have

$$\pm a^T b \le a^T N a + b^T N^{-1} b.$$

Proposition 2.2 For any symmetric positive definite matrix $M \in M^{n \times n}$, scalar $\gamma > 0$ and vector function $\omega : [0, \gamma] \to R^n$ such that the integrations concerned are well defined, the following inequality holds

$$\left(\int_0^\gamma \omega(s)ds\right)^T M\left(\int_0^\gamma \omega(s)ds\right) \le \gamma\left(\int_0^\gamma \omega^T(s)M\omega(s)ds\right).$$

Proposition 2.3 Let E, H and F be any constant matrices of appropriate dimensions and $F^T F \leq I$. For any $\epsilon > 0$, we have

$$EFH + H^T F^T E^T \le \epsilon E E^T + \epsilon^{-1} H^T H.$$

Proposition 2.4 (Schur complement lemma). Given constant matrices X, Y, Z with appropriate dimensions satisfying $X = X^T, Y = Y^T > 0$. Then $X + Z^T Y^{-1} Z < 0$, if and only if

$$\begin{pmatrix} X & Z^T \\ Z & -Y \end{pmatrix} < 0 \text{ or } \begin{pmatrix} -Y & Z \\ Z^T & X \end{pmatrix} < 0 .$$

Lemma 2.1 (Free matrix based integral inequality [3]).

Let $x(r) \in \mathbb{R}^{n \times n}$ be a continuous function : $\{x(r) | r \in [a, b]\}$. For symmetric matrices $M, N \in \mathbb{R}^{3n \times 3n}, R \in \mathbb{R}^{n \times n}$, matrices $x \in \mathbb{R}^{3n \times 3n}, W, Y \in \mathbb{R}^{3n \times n}$ satisfying

$$\theta = \begin{bmatrix} M & X & Y \\ * & N & W \\ * & * & R \end{bmatrix} \ge 0,$$

the following inequality holds :

$$-\int_{a}^{b} \dot{X}^{T} R \dot{X}(r) dr \leq \xi^{T} \Big((b-a)M + \frac{b-a}{3}N + He\{Y\phi_{1} + W\phi_{2}\} \Big) \xi,$$

where

the
$$\phi_1 = \begin{bmatrix} I & -I & 0 \end{bmatrix}, \qquad \phi_2 = \begin{bmatrix} -I & -I & 2I \end{bmatrix},$$

$$\xi = col\left\{x(b), x(a), \frac{1}{b-a}\int_a^b x(s)ds\right\} \,.$$

3 Main results

The following notations will be used throughout this paper.

$$\begin{split} J_{11} &= A^T P + PA + 2Q - h_1 e^{-2\alpha h_1} \Phi_1 - h_2 e^{-2\alpha h_2} \Psi_1 - (S_1 A + A^T S_1^T), J_{12} = -h_1 e^{-2\alpha h_1} \Phi_4 - S_2 A_2 \\ J_{13} &= -h_2 e^{-2\alpha h_2} \Psi_4 - S_3 A, J_{14} = J_{41} = PD - S_1 D - S_4 D, J_{15} = -h_1 e^{-2\alpha h_1} \Phi_7 - S_5 A, \\ J_{16} &= -h_2 e^{-2\alpha h_2} \Psi_7 - S_6 A, J_{17} = J_{71} = -S_7 A, J_{18} = J_{81} = S_1 - S_8 A, \\ J_{21} &= -h_1 e^{-2\alpha h_1} \Psi_2 - S_2 A, J_{22} = e^{2\alpha h_1} Q - h_1 e^{-2\alpha h_1} \Phi_5 - (h_2 - h_1) e^{-2\alpha h_2} \Omega_1, \\ J_{23} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_4 - (0.5) (e^{2\alpha h_1} + e^{2\alpha h_2}) Q, J_{24} = J_{42} = -S_2 D, J_{25} = -h_1 e^{-2\alpha h_1} \Phi_8, \\ J_{26} &= J_{62} = 0, J_{27} = -(h_2 - h_1) e^{-2\alpha h_2} \Omega_7, J_{28} = J_{82} = S_2, J_{31} = -h_2 e^{-2\alpha h_2} \Psi_2 - S_3 A, \\ J_{32} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_2 - (0.5) (e^{2\alpha h_1} + e^{2\alpha h_2}) Q, J_{34} = J_{43} = -S_3 D, J_{35} = J_{53} = 0, \\ J_{33} &= -e^{-2\alpha h_2} Q - h_2 e^{-2\alpha h_2} \Psi_5 - (h_2 - h_1) e^{-2\alpha h_2} \Omega_5, J_{36} = -h_2 e^{-2\alpha h_2} \Psi_8, \\ J_{37} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_8, J_{38} = J_{83} = S_3, J_{44} = -2S_4 D = -(S_4 D + D^T S_4^T), \\ J_{45} &= J_{54} = -S_5 D, J_{46} = J_{64} = -S_6 D, J_{47} = J_{74} = -S_7 D, J_{48} = J_{84} = S_4 - S_8 D, \\ J_{51} &= -h_1 e^{-2\alpha h_1} \Phi_3 - S_5 A, J_{52} = -h_1 e^{-2\alpha h_1} \Phi_5, J_{55} = -h_1 e^{-2\alpha h_1} \Phi_9, J_{56} = J_{65} = 0, \\ J_{57} &= J_{75} = 0, J_{58} = J_{85} = S_5, J_{61} = -h_2 e^{-2\alpha h_2} \Psi_3 - S_6 A, J_{63} = -h_2 e^{-2\alpha h_2} \Psi_6, \\ J_{66} &= -h_2 e^{-2\alpha h_2} \Psi_9, J_{67} = J_{76} = 0, J_{68} = S_6, J_{72} = -(h_2 - h_1) e^{-2\alpha h_2} \Omega_3, \\ J_{73} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_6, J_{77} = -(h_2 - h_1) e^{-2\alpha h_2} \Omega_9, J_{78} = J_{87} = S_7, \\ J_{88} &= (h_1^2 + h_2^2) R + (h_2 - h_1)^2 U + S_8 + S_8^T. \end{split}$$

Theorem 3.1 Given $\alpha > 0$. The zero solution of system (1) is α -exponentially stable if there exist positive matrices P,Q,R,U, positive semi-definite matrices $M_{ii}, N_{ii}(i = 1, 2, 3)$, any matrices $M_{ij}, N_{ij}(i = 1, 2, 3, i \neq j)$ and $S_i(i = 1, 2, ..., 8)$ such that following LMIs hold :

$$\theta = \begin{bmatrix} M & X & Y \\ * & N & W \\ * & * & R \end{bmatrix} \ge 0,$$

$$J = \begin{bmatrix} J_{11} & J_{12} & J_{13} & J_{14} & J_{15} & J_{16} & -S_7A & -S_1 - S_8A \\ * & J_{22} & J_{23} & -S_2D & J_{25} & 0 & J_{27} & S_2 \\ * & * & J_{33} & -S_3D & 0 & J_{36} & J_{37} & S_4 \\ * & * & * & * & -2S_4D & -S_5D & -S_6D & -S_7D & S_4 - S_8D \\ * & * & * & * & * & J_{55} & 0 & 0 & S_5 \\ * & * & * & * & * & * & J_{66} & 0 & S_6 \\ * & * & * & * & * & * & * & J_{66} & 0 & S_6 \\ * & * & * & * & * & * & * & J_{77} & S_7 \\ * & * & * & * & * & * & * & J_{88} \end{bmatrix} < 0, \quad (3)$$
ere
$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}, \quad N = \begin{bmatrix} N_{11} & N_{12} & N_{13} \\ N_{21} & N_{22} & N_{23} \\ N_{31} & N_{32} & N_{33} \end{bmatrix}.$$

where

Proof We introduce the following LyapunovKrasovskii functional for the system (1)

$$V(t, x_t) = \sum_{i=1}^7 V_i \; ,$$

where

$$V_1 = x^T(t) P x(t), (3.1.1)$$

$$V_2 = \int_{t-h_1}^t e^{2\alpha(s-t)} x^T(s) Q x(s) ds, \qquad (3.1.2)$$

$$V_3 = \int_{t-h_2}^t e^{2\alpha(s-t)} x^T(s) Q x(s) ds, \qquad (3.1.3)$$

$$V_4 = \int_{t-h_2}^{t-h_1} e^{2\alpha(s-t)} x^T(s) Q x(s) ds, \qquad (3.1.4)$$

$$V_5 = h_1 \int_{-h_1}^0 \int_{t+s}^t e^{-2\alpha(\tau-t)} \dot{x}^T(\tau) R \dot{x}(\tau) d\tau \ ds, \qquad (3.1.5)$$

$$V_6 = h_2 \int_{-h_2}^0 \int_{t+s}^t e^{-2\alpha(\tau-t)} \dot{x}^T(\tau) R \dot{x}(\tau) d\tau \ ds, \qquad (3.1.6)$$

$$V_7 = (h_2 - h_1) \int_{-h_2}^{-h_1} \int_{t+s}^{t} e^{2\alpha(\tau-t)} \dot{x}^T(\tau) U \dot{x}(\tau) d\tau \, ds.$$
(3.1.7)

It easy to verify that

$$\lambda_1 \parallel x(t) \parallel^2 \le V(t, x_t) \le \lambda_2 \parallel x_t \parallel^2, \quad \forall_t \ge 0.$$
 (3.2)

By taking the derivative of V_1 along the solution of system (1), we have

$$\begin{split} \dot{V}_1 &= 2x^T(t)P\dot{x}(t) \\ &= x^T(t)\left[A^TP + PA\right]x(t) + 2x^T(t)PDx(t-h(t)) \ . \\ \dot{V}_2 &= x^T(t)Qx(t) - e^{-2\alpha h_1}x^T(t-h_1)Qx(t-h_1) - 2\alpha V_2 \ . \\ \dot{V}_3 &= x^T(t)Qx(t) - e^{-2\alpha h_2}x^T(t-h_2)Qx(t-h_2) - 2\alpha V_3 \ . \\ \dot{V}_4 &= e^{-2\alpha h_1}\left[x^T(t-h_1)Qx(t-h_1) - e^{2\alpha h_2}x^T(t-h_2)Qx(t-h_2)\right] - 2e^{-2\alpha}V_4 \\ \dot{V}_5 &= h_1^2\dot{x}^T(t)R\dot{x}(t) - h_1\int_{t-h_1}^t e^{2\alpha(t-h_1)}e^{-2\alpha t}\dot{x}^T(s)R\dot{x}(s)ds - 2\alpha V_5 \\ &\leq h_1^2\dot{x}^T(t)R\dot{x}(t) - h_1e^{-2\alpha h_1}\int_{t-h_1}^t \dot{x}^T(s)R\dot{x}(s)ds - 2\alpha V_5 \ . \end{split}$$

By applying Proposition 2.2, Newton-Leibniz formula and Lemma 2.1, we obtain
$$\begin{split} \dot{V}_5 &\leq h_1^2 \dot{x}^T(t) R \dot{x}(t) + x(t) \Phi_1 h_1 e^{-2\alpha h_1} x^T(t) + x(t-h_1) \Phi_4 h_2 e^{-2\alpha h_1} x^T(t) \\ &\quad + \frac{1}{h_1} \int_{t-h_1}^t x(s) ds \Phi_7 h_1 e^{-2\alpha h_1} x^T(t) + x(t) \Phi_2 h_1 e^{-2\alpha h_1} x^T(t-h_1) \\ &\quad + x(t-h_1) \Phi_5 h_1 e^{-2\alpha h_1} x^T(t-h_1) + \frac{1}{h_1} \int_{t-h_1}^t x(s) ds \Phi_8 h_1 e^{-2\alpha h_1} x^T(t-h_1) \\ &\quad + x(t) \Phi_3 h_1 e^{-2\alpha h_1} \left(\frac{1}{h_1} \int_{t-h_1}^t x(s) ds\right)^T + x(t-h_1) \Phi_6 h_1 e^{-2\alpha h_1} \left(\frac{1}{h_1} \int_{t-h_1}^t x(s) ds\right)^T \\ &\quad + \frac{1}{h_1} \int_{t-h_1}^t x(s) ds \Phi_9 h_1 e^{-2\alpha h_1} \left(\frac{1}{h_1} \int_{t-h_1}^t x(s) ds\right)^T - 2\alpha V_5 , \\ \dot{V}_6 &= h_2^2 \dot{x}^\tau(t) R \dot{x}(t) - h_2 \int_{t-h_2}^t e^{2\alpha (s-t)} \dot{x}^\tau(s) R \dot{x}(s) ds - 2\alpha V_6 \\ &\leq h_2^2 \dot{x}^\tau(t) R \dot{x}(t) - h_2 e^{-2\alpha h_2} \int_{t-h_2}^t \dot{x}^\tau(s) R \dot{x}(s) ds - 2\alpha V_6 . \quad \text{From Proposition 2.2, Newton-Exercise formula} \end{split}$$

Leibniz formula and Lemma 2.1, we have

$$\begin{split} \dot{V_6} &\leq h_2^2 \dot{x}^\tau(t) R \dot{x}(t) + x(t) \Psi_1 h_2 e^{-2\alpha h_2} x^T(t) + x(t-h_2) \Psi_4 h_2 e^{-2\alpha h_2} x^T(t) \\ &+ \frac{1}{h_2} \int_{t-h_2}^t x(s) ds \Psi_7 h_2 e^{-2\alpha h_2} x^T(t) + x(t) \Psi_2 h_2 e^{-2\alpha h_2} x^T(t-h_2) \\ &+ x(t-h_2) \Psi_5 h_2 e^{-2\alpha h_2} x^T(t-h_2) + \frac{1}{h_2} \int_{t-h_2}^t x(s) ds \Psi_8 h_2 e^{-2\alpha h_2} x^T(t-h_2) \\ &+ x(t) \Psi_3 h_2 e^{-2\alpha h_2} \frac{1}{h_2} \int_{t-h_2}^t x(s) ds^T + x(t-h_2) \Psi_6 h_2 e^{-2\alpha h_2} \frac{1}{h_2} \int_{t-h_2}^t x(s) ds^T \\ &+ \frac{1}{h_2} \int_{t-h_2}^t x(s) ds \Psi_9 h_2 e^{-2\alpha h_2} \frac{1}{h_2} \int_{t-h_2}^t x(s) ds^T - 2\alpha V_6 , \end{split}$$

$$\dot{V}_{7} = (h_{2} - h_{1})^{2} \dot{x}^{T}(t) U \dot{x}(t) - (h_{2} - h_{1}) \int_{-h_{2}}^{-h_{1}} e^{2\alpha s} \dot{x}^{T}(t+s) U \dot{x}(t+s) ds - 2\alpha V_{7}$$

$$\leq (h_{2} - h_{1})^{2} \dot{x}^{T}(t) U \dot{x}(t) - (h_{2} - h_{1}) e^{2\alpha h_{2}} \int_{t-h_{2}}^{t-h_{1}} \dot{x}^{T}(s) U \dot{x}(s) ds - 2\alpha V_{7}.$$

By using Proposition 2.2, Newton-Leibniz formula and Lemma 2.1, we obtain $\dot{V}_7 \leq (h_2 - h_1)^2 \dot{x}^T(t) U \dot{x}(t) + x(t - h_1)(h_2 - h_1)e^{-2\alpha h_2}\Omega_1 x^T(t - h_1)$

$$+ x(t-h_2)(h_2-h_1)e^{-2\alpha h_2}\Omega_4 x^T(t-h_1) + \frac{1}{h_2-h_1} \int_{t-h_2}^{t-h_1} x(s)ds(h_2-h_1)e^{-2\alpha h_2}\Omega_7 x^T(t-h_1) + x(t-h_1)(h_2-h_1)e^{-2\alpha h_2}\Omega_2 x^T(t-h_2) + x(t-h_2)(h_2-h_1)e^{-2\alpha h_2}\Omega_5 x^T(t-h_2) + \frac{1}{h_2-h_1} \int_{t-h_2}^{t-h_1} x(s)ds(h_2-h_1)e^{-2\alpha h_2}\Omega_8 x^T(t-h_2) + x(t-h_1)(h_2-h_1)e^{-2\alpha h_2}\Omega_3 \left(\frac{1}{h_2-h_1} \int_{t-h_2}^{t-h_1} x(s)ds\right)^T + x(t-h_2)(h_2-h_1)e^{-2\alpha h_2}\Omega_6 \left(\frac{1}{h_2-h_1} \int_{t-h_2}^{t-h_1} x(s)ds\right)^T + \frac{1}{h_2-h_1} \int_{t-h_2}^{t-h_1} x(s)ds(h_2-h_1)e^{-2\alpha h_2}\Omega_9 \left(\frac{1}{h_2-h_1} \int_{t-h_2}^{t-h_1} x(s)ds\right)^T - 2\alpha V_7 .$$

Therefore , we have

$$\begin{split} \dot{V}(.) &+ 2\alpha V(.) \\ &\leq x^{T}(t) \Big[A^{T}P + PA \Big] x(t) + 2x^{T}(t) PDx(t-h(t)) + x^{T}Qx(t) - e^{2\alpha h_{1}}x^{T} \Big(t - h_{1}Qx(t-h_{2}) \Big) \\ &+ e^{2\alpha h_{1}}x^{T} \Big(t - h_{1}Qx(t-h_{1}) \Big) - e^{2\alpha h_{2}}x^{T} \Big(t - h_{2}Qx(t-h_{2}) \Big) + h_{1}^{2}\dot{x}^{T}(t)R\dot{x}(t) \\ &- h_{1}e^{-2\alpha h_{1}} \int_{t-h_{1}}^{t} \dot{x}^{T}(s)R\dot{x}(s)ds + h_{2}^{2}\dot{x}^{T}(t)R\dot{x}(t) - h_{2}e^{-2\alpha h_{2}} \int_{t-h_{2}}^{t} \dot{x}^{T}(s)R\dot{x}(s)ds \\ &+ (h_{2} - h_{1})^{2}\dot{x}^{T}(t)R\dot{x}(t) - (h_{2} - h_{1})e^{-2\alpha h_{2}} \int_{t-h_{2}}^{t-h_{1}} \dot{x}^{T}(s)R\dot{x}(s)ds \\ &\leq x^{T}(t) \Big[A^{T}P + PA \Big] x(t) + 2x^{T}(t)PDx(t-h(t)) + x^{T}Qx(t) \\ &- e^{2\alpha h_{1}}x^{T} \Big(t - h_{1}Qx(t-h_{2}) \Big) + e^{2\alpha h_{1}}x^{T} \Big(t - h_{1}Qx(t-h_{1}) \Big) - e^{2\alpha h_{2}}x^{T} \Big(t - h_{2}Qx(t-h_{2}) \Big) \\ &+ h_{1}^{2}\dot{x}^{T}(t)R\dot{x}(t) + x(t)\Phi_{1}h_{1}e^{-2\alpha h_{1}}x^{T}(t) + x(t-h_{1})\Phi_{4}h_{2}e^{-2\alpha h_{1}}x^{T}(t) \\ &+ \frac{1}{h_{1}}\int_{t-h_{1}}^{t} x(s)ds\Phi_{7}h_{1}e^{-2\alpha h_{1}}x^{T}(t) + x(t)\Phi_{2}h_{1}e^{-2\alpha h_{1}}x^{T}(t-h_{1}) \\ &+ x(t-h_{1})\Phi_{5}h_{1}e^{-2\alpha h_{1}}x^{T}(t-h_{1}) + \frac{1}{h_{1}}\int_{t-h_{1}}^{t} x(s)ds\Phi_{8}h_{1}e^{-2\alpha h_{1}}x^{T}(t-h_{1}) \end{split}$$

$$+ x(t)\Phi_{3}h_{1}e^{-2\alpha h_{1}}\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T} + x(t-h_{1})\Phi_{6}h_{1}e^{-2\alpha h_{1}}\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T} \\ + \frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\Phi_{9}h_{1}e^{-2\alpha h_{1}}\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T} \\ + \frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\Phi_{9}h_{1}e^{-2\alpha h_{2}}x^{T}(t) + x(t)\Psi_{2}h_{2}e^{-2\alpha h_{2}}x^{T}(t-h_{2}) \\ + x(t-h_{2})\Psi_{5}h_{2}e^{-2\alpha h_{2}}x^{T}(t-h_{2}) + \frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\Psi_{8}h_{2}e^{-2\alpha h_{2}}x^{T}(t-h_{2}) \\ + x(t)\Psi_{3}h_{2}e^{-2\alpha h_{2}}\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T} + x(t-h_{2})\Psi_{6}h_{2}e^{-2\alpha h_{2}}\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T} \\ + \frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\Psi_{9}h_{2}e^{-2\alpha h_{2}}\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T} + x(t-h_{2})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{4}x^{T}(t-h_{1}) \\ + (h_{2}-h_{1})^{2}\dot{x}^{T}(t)U\dot{x}(t) + x(t-h_{1})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{1}x^{T}(t-h_{1}) \\ + (h_{2}-h_{1})^{2}\dot{x}^{T}(t)U\dot{x}(t) + x(t-h_{1})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{1}x^{T}(t-h_{1}) \\ + x(t-h_{2})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{5}x^{T}(t-h_{2}) + \frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{8}x^{T}(t-h_{2}) \\ + x(t-h_{1})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{3}\left(\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T} \\ + x(t-h_{2})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{6}\left(\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T} \\ + x(t-h_{2})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{6}\left(\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T} \\ + x(t-h_{2})(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{6}\left(\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds\right)^{T}$$

$$(3.3)$$

By using the following identity relation

$$\dot{x}(t) - Ax(t) - Dx(t - h(t)) = 0,$$

we have

$$2x^{T}(t)S_{1}\dot{x}(t) - 2x^{T}(t)S_{1}Ax(t) - 2x^{T}(t)S_{1}Dx(t-h(t)) = 0$$

$$2x^{T}(t-h_{1})S_{2}\dot{x}(t) - 2x^{T}(t-h_{1})S_{2}Ax(t) - 2x^{T}(t-h_{1})S_{2}Dx(t-h(t)) = 0$$

$$2x^{T}(t-h_{2})S_{3}\dot{x}(t) - 2x^{T}(t-h_{2})S_{3}Ax(t) - 2x^{T}(t-h_{2})S_{3}Dx(t-h(t)) = 0$$

$$2x^{T}(t-h(t))S_{4}\dot{x}(t) - 2x^{T}(t-h(t))S_{4}Ax(t) - 2x^{T}(t-h(t))S_{4}Dx(t-h(t)) = 0$$

$$2\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T}S_{5}\dot{x}(t) - 2\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T}S_{5}Ax(t)$$

$$-2\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T}S_{5}Dx(t-h(t)) = 0$$

$$2\left(\frac{1}{h_2}\int_{t-h_2}^{t}x(s)ds\right)^{T}S_{6}\dot{x}(t) - 2\left(\frac{1}{h_2}\int_{t-h_2}^{t}x(s)ds\right)^{T}S_{6}Ax(t)$$

$$-2\left(\frac{1}{h_2}\int_{t-h_2}^{t}x(s)ds\right)^{T}S_{6}Dx(t-h(t)) = 0$$

$$2\left(\frac{1}{h_2-h_1}\int_{t-h_2}^{t-h_1}x(s)ds\right)^{T}S_{7}\dot{x}(t) - 2\left(\frac{1}{h_2-h_1}\int_{t-h_2}^{t-h_2}x(s)ds\right)^{T}S_{7}Ax(t)$$

$$-2\left(\frac{1}{h_2-h_1}\int_{t-h_2}^{t-h_1}x(s)ds\right)^{T}S_{7}Dx(t-h(t)) = 0.$$

$$2\dot{x}^{T}(t)S_{8}\dot{x}(t) - 2\dot{x}^{T}(t)S_{8}Ax(t) - 2\dot{x}^{T}(t)S_{8}Dx(t-h(t)) = 0.$$

(3.4)

By adding all the zero items of (3.4) into (3.3) , we obtain $\dot{V}(.) + 2\alpha V(.)$

$$\begin{split} &\leq x^{T} \Big[A^{T}P + PA + 2Q - h_{1}e^{-2\alpha h_{1}} \Phi_{1} - h_{2}e^{-2\alpha h_{2}} \Psi_{1} - (S_{1}A + A^{T}S_{1}^{T}) \Big] x(t) \\ &+ x^{T}(t) \Big[-h_{1}e^{-2\alpha h_{1}} \Phi_{4} - S_{2}A \Big] x(t - h_{1}) + x^{T}(t) \Big[-h_{2}e^{-2\alpha h_{1}} \Psi_{4} - S_{3}A \Big] x(t - h_{2}) \\ &+ x^{T} \Big[PD - S_{1}D - S_{4}D \Big] x(t - h(t)) + x^{T}(t) \Big[-h_{1}e^{-2\alpha h_{1}} \Phi_{7} - S_{5}A \Big] \frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \\ &+ x^{T}(t) \Big[-h_{2}e^{-2\alpha h_{2}} \Psi_{7} - S_{6}A \Big] \frac{1}{h_{2}} \int_{t-h_{2}}^{t} x(s) ds + x^{T}(t) \Big[-S_{7}A \Big] \frac{1}{h_{2} - h_{1}} \int_{t-h_{2}}^{t-h_{1}} x(s) ds \\ &+ x^{T} \Big[S_{1} - S_{8}A \Big] \dot{x}(t) + x^{T}(t - h_{1}) \Big[-h_{1}e^{-2\alpha h_{1}} \Phi_{2} - S_{2}A \Big] x(t) + x^{T}(t - h_{1}) \Big[-S_{2}D \Big] x(t - h(t)) \\ &+ x^{T}(t - h_{1}) \Big[2e^{-2\alpha h_{2}} Q - h_{1}e^{-2\alpha h_{2}} \Phi_{5} - (h_{2} - h_{1})e^{-2\alpha h_{2}} \Omega_{1} \Big] x(t - h_{2}) \\ &+ x^{T}(t - h_{1}) \Big[-(h_{2} - h_{1})e^{-2\alpha h_{2}} \Omega_{4} - (0.5)(e^{2\alpha h_{1}} + e^{2\alpha h_{2}} Q) \Big] x(t - h_{2}) \\ &+ x^{T}(t - h_{1}) \Big[-h_{1}e^{-2\alpha h_{2}} \Phi_{4} - (0.5)(e^{2\alpha h_{1}} + e^{2\alpha h_{2}} Q) \Big] x(t - h_{2}) \\ &+ x^{T}(t - h_{1}) \Big[-h_{2}e^{-2\alpha h_{2}} \Omega_{7} \Big] \frac{1}{h_{2}} \int_{t-h_{1}}^{t-h_{1}} x(s) ds \\ &+ x^{T}(t - h_{1}) \Big[-h_{2}e^{-2\alpha h_{2}} \Omega_{7} \Big] \frac{1}{h_{2} - h_{1}} \int_{t-h_{2}}^{t-h_{1}} x(s) ds \\ &+ x^{T}(t - h_{2}) \Big[-h_{2}e^{-2\alpha h_{2}} \Psi_{2} - S_{3}A \Big] x(t) + x^{T}(t - h_{2}) \Big[-S_{3}D \Big] x(t - h_{1}) \\ &+ x^{T}(t - h_{2}) \Big[-(h_{2} - h_{1})e^{-2\alpha h_{2}} \Omega_{2} - (0.5)(e^{2\alpha h_{1}} + e^{2\alpha h_{2}}) Q \Big] x(t - h_{1}) \\ &+ x^{T}(t - h_{2}) \Big[-e^{-2\alpha h_{2}} Q - h_{2}e^{-2\alpha h_{2}} \Psi_{5} - (h_{2} - h_{1})e^{-2\alpha h_{2}} \Omega_{5} \Big] x(t - h_{2}) \\ &+ x^{T}(t - h_{2}) \Big[-h_{2}e^{-2\alpha h_{2}} \Psi_{8} \Big] \frac{1}{h_{2}} \int_{t-h_{2}}^{t} x(s) ds + x^{T}(t - h(t)) \Big[PD - S_{4}A - S_{1}D \Big] x(t) \\ \end{aligned}$$

$$\begin{split} &+x^{T}(t-h_{2})\Big[-(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{8}\Big]\frac{1}{h_{2}-h_{1}}\int_{t-h_{2}}^{t-h_{1}}x(s)ds+x^{T}(t-h_{2})[S_{3}]\dot{x}(t)\\ &+x^{T}(t-h(t))[-S_{2}D]x(t-h_{1})+x^{T}(t-h(t))[-S_{3}D]x(t-h_{2})\\ &+x^{T}(t-h(t))[-2S_{4}D]x(t-h(t))+x^{T}(t-h(t))[-S_{5}D]\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\\ &+x^{T}(t-h(t))[-S_{6}D]\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds+x^{T}(t-h(t))[-S_{7}D]\frac{1}{h_{2}-h_{1}}\int_{t-h}^{t-h_{1}}x(s)ds\\ &+x^{T}(t-h(t))[S_{4}-S_{8}D]\dot{x}(t)+(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds)^{T}\left[-h_{1}e^{-2\alpha h_{1}}\Phi_{3}-S_{5}A\right]x(t)\\ &+(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds)^{T}\left[-h_{1}e^{-2\alpha h_{1}}\Phi_{9}\right]\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T}\left[-S_{5}D]x(t-h(t))\right)\\ &+\left(\frac{1}{h_{1}}\int_{t-h_{1}}^{t}x(s)ds\right)^{T}\left[-h_{1}e^{-2\alpha h_{1}}\Phi_{9}\right]\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T}\left[-h_{2}e^{-2\alpha h_{2}}\Psi_{3}-S_{6}A\right]x(t)\\ &+\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T}\left[-h_{2}e^{-2\alpha h_{2}}\Phi_{9}\right]x(t-h_{2})+\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T}\left[-S_{6}D]x(t-h(t))\right)\\ &+\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T}\left[-h_{2}e^{-2\alpha h_{2}}\Psi_{9}\right]\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T}\left[-S_{6}D]x(t-h(t))\right)\\ &+\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T}\left[-h_{2}e^{-2\alpha h_{2}}\Psi_{9}\right]\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T}\left[-S_{6}D]x(t-h(t))\right)\\ &+\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T}\left[-h_{2}e^{-2\alpha h_{2}}\Psi_{9}\right]\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t-h_{2}}x(s)ds\right)^{T}\left[-S_{6}D]x(t-h(t))\right)\\ &+\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t}x(s)ds\right)^{T}\left[-h_{2}e^{-2\alpha h_{2}}\Psi_{9}\right]\left(\frac{1}{h_{2}}\int_{t-h_{2}}^{t-h_{2}}x(s)ds\right)^{T}\left[-S_{7}D]x(t-h(t))\right)\\ &+\left(\frac{1}{h_{2}}-h_{1}\int_{t-h_{2}}^{t-h_{3}}x(s)ds\right)^{T}\left[-h_{2}-h_{1}e^{-2\alpha h_{2}}\Omega_{9}\right]x(t-h_{1})\\ &+\left(\frac{1}{h_{2}}-h_{1}\int_{t-h_{2}}^{t-h_{3}}x(s)ds\right)^{T}\left[-(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{9}\right]x(t-h_{2})\\ &+\left(\frac{1}{h_{2}}-h_{1}\int_{t-h_{2}}^{t-h_{3}}x(s)ds\right)^{T}\left[-(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{9}\right]x(t-h_{2})\\ &+\left(\frac{1}{h_{2}}-h_{1}\int_{t-h_{2}}^{t-h_{3}}x(s)ds\right)^{T}\left[-(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{9}\right]x(t-h_{2})\\ &+\left(\frac{1}{h_{2}}-h_{1}\int_{t-h_{2}}^{t-h_{3}}x(s)ds\right)^{T}\left[-(h_{2}-h_{1})e^{-2\alpha h_{2}}\Omega_{9}\right]x(t-h_{2})\\ &+\left(\frac{1}{h_{2}}-h_{1}\int_{t-h_{2}}^{t-h_{3$$

$$=\xi^T(t)J\xi(t),$$

where

$$\xi(t) = \left[x(t), x(t-h_2), x(t-h_2), x(t-h(t)), \frac{1}{h_1} \int_{t-h_1}^t x(s) ds, \frac{1}{h_2} \int_{t-h_2}^t x(s) ds, \frac{1}{h_2 - h_2} \int_{t-h_2}^{t-h_1} x(s) ds, \dot{x}(t) \right].$$

According to condition (3.1), we obtain

$$\dot{V}(t, x_t) + 2\alpha V(t, x_t) \le 0$$

$$\dot{V}(t, x_t) \le -2\alpha V(t, x_t), \quad \forall t \in \mathbb{R}^+.$$
(3.5)

From (3.5), we have

$$\therefore V(t, x_t) \leq V(\phi)e^{-2\alpha t}, \quad \forall t \in \mathbb{R}^+$$

From $\lambda_{\min} \|x(t)\|^2 \leq V(t, x_t) \leq \lambda_{\max} \|x(t)\|^2$
 $\lambda_1 \|x(t, \phi)\|^2 \leq V(x_t) \leq V(\phi)e^{-2\alpha t} \leq \lambda_2 e^{-2\alpha t} \|\phi\|^2$
 $\|x(t, \phi)\|^2 \leq \frac{\lambda_2 e^{-2\alpha t} \|\phi\|^2}{\lambda_1}$
 $\leq \frac{\lambda_2}{\lambda_1} e^{-2\alpha t} \|\phi\|^2 .$

Then, we have

$$\begin{aligned} \|x(t,\phi)\| &\leq \sqrt{\left(\frac{\lambda_2}{\lambda_1}\right)e^{-2\alpha t}\|\phi\|^2} \\ &\leq \sqrt{\frac{\lambda_2}{\lambda_1}}e^{-\alpha t}\|\phi\|, \ t \in R^+. \end{aligned}$$

From definition 2.1, we concludes that the zero equation of system(1) is α - exponentially stable.

Next, we consider the following uncertain linear systems with interval time-varying delay:

$$\dot{x}(t) = [A + \Delta A(t)]x(t) + [D + \Delta D(t)]x(t - h(t)), \quad t \in \mathbb{R}^+, x(t) = \phi(t), t \in [h_2, 0]$$
(3.2)

where the time-varying uncertain matrices $\Delta A(t)$, $\Delta D(t)$ are given by :

$$\Delta A(t) = E_a F_a(t) H_a, \Delta D(t) = E_d F_d(t) H_d$$

and E_a, E_d, H_a, H_d are known constant matrices with appropriate dimensions, F_a, F_d are unknown uncertain matrices satisfying

$$F_a^T(t)F_a(t) \le I, F_d^T(t)F_a(t) \le I, t \in \mathbb{R}^+.$$

The following notations will be used throughout this paper.

$$\begin{split} M_{11} &= A^T P + PA + 2Q - h_1 e^{-2\alpha h_1} \Phi_1 - h_2 e^{-2\alpha h_2} \Psi_1 + H_a^T H_a + H_a^T H_a, \\ M_{12} &= -h_1 e^{-2\alpha h_1} \Phi_4, \\ M_{13} &= -h_2 e^{-2\alpha h_2} \Psi_4, \\ M_{14} &= J_{41} = PD + 0.5 + H_d^T H_d - \bar{S}_1 A, \\ M_{15} &= -h_1 e^{-2\alpha h_1} \Phi_7, \\ M_{16} &= -h_2 e^{-2\alpha h_2} \Psi_7, \\ M_{17} &= J_{71} = 0, \\ M_{18} &= J_{81} = -\bar{S}_2 A, \\ M_{21} &= -h_1 e^{-2\alpha h_1} \Psi_2, \\ M_{22} &= e^{2\alpha h_1} Q - h_1 e^{-2\alpha h_1} \Phi_5 - (h_2 - h_1) e^{-2\alpha h_2} \Omega_1, \\ M_{23} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_4, \\ M_{24} &= J_{42} = 0, \\ M_{25} &= -h_1 e^{-2\alpha h_1} \Phi_8, \\ M_{26} &= J_{62} = 0, \\ M_{27} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_7, \\ M_{28} &= J_{82} = 0, \\ M_{31} &= -h_2 e^{-2\alpha h_2} \Psi_2 - h_2 e^{-2\alpha h_2} \Psi_5 - (h_2 - h_1) e^{-2\alpha h_2} \Omega_5, \\ M_{34} &= -e^{-2\alpha h_2} Q - h_2 e^{-2\alpha h_2} \Psi_5 - (h_2 - h_1) e^{-2\alpha h_2} \Omega_5, \\ M_{36} &= -h_2 e^{-2\alpha h_2} \Psi_8, \\ M_{37} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_8, \\ M_{38} &= J_{83} = 0, \\ M_{44} &= -2S_4 D = H_d^T H_d + H_d^T H_d + H_d^T H_d, \\ M_{46} &= J_{64} = 0, \\ M_{47} &= J_{74} = 0, \\ M_{48} &= J_{84} = \bar{S}_1, \\ M_{51} &= -h_1 e^{-2\alpha h_1} \Phi_3, \\ M_{52} &= -h_1 e^{-2\alpha h_1} \Phi_5, \\ M_{55} &= -h_1 e^{-2\alpha h_2} \Psi_6, \\ M_{66} &= -h_2 e^{-2\alpha h_2} \Psi_9, \\ M_{67} &= J_{75} = 0, \\ M_{68} &= 0, \\ M_{72} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_3, \\ M_{73} &= -(h_2 - h_1) e^{-2\alpha h_2} \Omega_9, \\ M_{88} &= (h_1^2 + h_2^2) R + (h_2 - h_1)^2 U + \bar{S}_2 + \bar{S}_2^T + H_d^T H_d + H_d^T H_d. \\ \end{bmatrix}$$

Theorem 3.2 Given $\alpha > 0$. The zero solution of the system (2) is α -exponentially stable if there exist symmetric positive definite matrices P, Q, R, U, and any matrices \overline{S}_i , i = 1, 2 such that the following LMI hold

$$M_{1} = \begin{bmatrix}
M_{11} & M_{12} & M_{13} & M_{14} & M_{15} & M_{16} & M_{17} & M_{18} \\
* & M_{22} & M_{23} & M_{24} & M_{25} & M_{26} & M_{27} & M_{28} \\
* & * & M_{33} & M_{34} & M_{35} & M_{36} & M_{37} & M_{38} \\
* & * & * & M_{44} & M_{45} & M_{46} & M_{47} & M_{48} \\
* & * & * & * & M_{55} & M_{56} & M_{57} & M_{58} \\
* & * & * & * & * & M_{66} & M_{67} & M_{68} \\
* & * & * & * & * & * & M_{66} & M_{67} & M_{68} \\
* & * & * & * & * & * & M_{66} & M_{67} & M_{68} \\
* & * & * & * & * & * & * & M_{88}
\end{bmatrix} < 0,$$

$$\mathcal{M}_{2} = \begin{bmatrix}
2PA & PE_{a} & PE_{d} & \bar{S}_{1}E_{a} & \bar{S}_{2}E_{a} \\
* & -I & 0 & 0 & 0 \\
* & * & * & -I & 0 \\
* & * & * & * & -I
\end{bmatrix} < 0,$$

$$\mathcal{M}_{3} = \begin{bmatrix}
-2\bar{S}_{1}D & \bar{S}_{1}E_{d} & \bar{S}_{2}E_{d} \\
* & -I & 0 \\
* & * & -I
\end{bmatrix} < 0,$$

$$(3.9)$$

Proof We consider the following Lyapunov - Krasovskii functional for the system (2)

$$V(t, x_t) = \sum_{i=1}^{7} V_i .$$

By taking the derivative of V_1 along the solution of system (2) we have

$$\dot{V}_{1} = 2x^{T}(t)P\dot{x}(t)$$

$$= x^{T}(t)[PA + A^{T}P]x(t) + x^{T}(t)[(PE_{a})(PE_{a})^{T} + H_{a}^{T}H_{a}]x(t) + x^{T}(t)[PD + D^{T}P]x(t - h(t))$$

$$+ x^{T}(t)[(PE_{d})(PE_{d})^{T} + H_{d}^{T}H_{d}](t)x(t - h(t))$$
(3.10)

$$\dot{V}_{2} = \frac{d}{dt} \int_{t-h_{1}}^{t} e^{2\alpha(s-t)} x^{T}(s) Qx(s) ds$$

= $x^{T}(t) Qx(t) - e^{-2\alpha h_{1}} x^{T}(t-h_{1}) Qx(t-h_{1}) - 2\alpha V_{2}$, (3.11)

$$\dot{V}_{3} = \frac{d}{dt} \int_{t-h_{2}}^{t} e^{2\alpha(s-t)} x^{T}(s) Qx(s) ds$$

= $x^{T}(t) Qx(t) - e^{-2\alpha h_{2}} x^{T}(t-h_{2}) Qx(t-h_{2}) - 2\alpha V_{3}$, (3.12)

$$\dot{V}_{4} = \frac{d}{dt} \int_{t-h_{2}}^{t-h_{1}} e^{2\alpha(s-t)} x^{T}(s) Qx(s) ds$$

= $e^{-2\alpha h_{1}} \Big[x^{T}(t-h_{1}) Qx(t-h_{1}) - e^{2\alpha h_{2}} x^{T}(t-h_{2}) Qx(t-h_{2}) \Big] - 2e^{-2\alpha} V_{4},$ (3.13)

$$\begin{split} \dot{V}_{5} &= \frac{d}{dt} \Big(h_{1}e^{-2\alpha t} \int_{-h_{1}}^{0} \int_{t+s}^{t} e^{2\alpha \tau} \dot{x}^{T}(\tau) R\dot{x}(\tau) d\tau ds \Big) \\ &\leq h_{1}^{2} \dot{x}^{T}(t) R\dot{x}(t) + x(t) \Phi_{1} h_{1} e^{-2\alpha h_{1}} x^{T}(t) + x(t-h_{1}) \Phi_{4} h_{2} e^{-2\alpha h_{1}} x^{T}(t) \\ &\quad + \frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \Phi_{7} h_{1} e^{-2\alpha h_{1}} x^{T}(t) + x(t) \Phi_{2} h_{1} e^{-2\alpha h_{1}} x^{T}(t-h_{1}) \\ &\quad + x(t-h_{1}) \Phi_{5} h_{1} e^{-2\alpha h_{1}} x^{T}(t-h_{1}) + \frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \Phi_{8} h_{1} e^{-2\alpha h_{1}} x^{T}(t-h_{1}) \\ &\quad + x(t) \Phi_{3} h_{1} e^{-2\alpha h_{1}} \Big(\frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \Big)^{T} + x(t-h_{1}) \Phi_{6} h_{1} e^{-2\alpha h_{1}} \Big(\frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \Big)^{T} \\ &\quad + \frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \Phi_{9} h_{1} e^{-2\alpha h_{1}} \Big(\frac{1}{h_{1}} \int_{t-h_{1}}^{t} x(s) ds \Big)^{T} - 2\alpha V_{5} \,, \end{split}$$
(3.14)
$$\dot{V}_{6} &= h_{2} e^{-2\alpha t} \int_{-h_{2}}^{0} \int_{t+s}^{t} e^{2\alpha \tau} \dot{x}^{T}(\tau) R\dot{x}(\tau) d\tau \, ds \\ &\leq h_{2}^{2} \dot{x}^{\tau}(t) R\dot{x}(t) + x(t) \Psi_{1} h_{2} e^{-2\alpha h_{2}} x^{T}(t) + x(t-h_{2}) \Psi_{4} h_{2} e^{-2\alpha h_{2}} x^{T}(t) \\ &\quad + \frac{1}{h_{2}} \int_{t-h_{2}}^{t} x(s) ds \Psi_{7} h_{2} e^{-2\alpha h_{2}} x^{T}(t) \, + x(t) \Psi_{2} h_{2} e^{-2\alpha h_{2}} x^{T}(t-h_{2}) \end{split}$$

$$+ x(t - h_2)\Psi_5h_2e^{-2\alpha h_2}x^T(t - h_2) + \frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Psi_8h_2e^{-2\alpha h_2}x^T(t - h_2) \\ + x(t)\Psi_3h_2e^{-2\alpha h_2}\frac{1}{h_2}\int_{t-h_2}^t x(s)ds^T + x(t - h_2)\Psi_6h_2e^{-2\alpha h_2}\frac{1}{h_2}\int_{t-h_2}^t x(s)ds^T \\ + \frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Psi_9h_2e^{-2\alpha h_2}\frac{1}{h_2}\int_{t-h_2}^t x(s)ds^T - 2\alpha V_6 ,$$

$$(3.15)$$

$$\dot{V}_7 = (h_2 - h_1)\int_{-h_2}^{-h_1}\int_{t+s}^t e^{2\alpha \tau}e^{-2\alpha t}\dot{x}^T(\tau)U\dot{x}(\tau)d\tau ds \\ \leq (h_2 - h_1)^2\dot{x}^T(t)U\dot{x}(t) + x(t - h_1)(h_2 - h_1)e^{-2\alpha h_2}\Omega_1x^T(t - h_1) \\ + x(t - h_2)(h_2 - h_1)e^{-2\alpha h_2}\Omega_4x^T(t - h_1) \\ + \frac{1}{h_2 - h_1}\int_{t-h_2}^{t-h_1} x(s)ds(h_2 - h_1)e^{-2\alpha h_2}\Omega_7x^T(t - h_1) \\ + x(t - h_1)(h_2 - h_1)e^{-2\alpha h_2}\Omega_2x^T(t - h_2) + x(t - h_2)(h_2 - h_1)e^{-2\alpha h_2}\Omega_5x^T(t - h_2) \\ + \frac{1}{h_2 - h_1}\int_{t-h_2}^{t-h_1} x(s)ds(h_2 - h_1)e^{-2\alpha h_2}\Omega_8x^T(t - h_2) \\ + x(t - h_1)(h_2 - h_1)e^{-2\alpha h_2}\Omega_3\left(\frac{1}{h_2 - h_1}\int_{t-h_2}^{t-h_1} x(s)ds\right)^T \\ + x(t - h_2)(h_2 - h_1)e^{-2\alpha h_2}\Omega_6\left(\frac{1}{h_2 - h_1}\int_{t-h_2}^{t-h_1} x(s)ds\right)^T \\ + x(t - h_2)(h_2 - h_1)e^{-2\alpha h_2}\Omega_6\left(\frac{1}{h_2 - h_1}\int_{t-h_2}^{t-h_1} x(s)ds\right)^T \\ + \frac{1}{h_2 - h_1}\int_{t-h_2}^{t-h_1} x(s)ds(h_2 - h_1)e^{-2\alpha h_2}\Omega_9\left(\frac{1}{h_2 - h_1}\int_{t-h_2}^{t-h_1} x(s)ds\right)^T$$

$$(3.16)$$

Hence , we that

$$\begin{split} \dot{V}(.) &+ 2\alpha V(.) \\ &\leq x^{T}(t)[PA + A^{T}P]x(t) + x^{T}(t)[(PE_{a})(PE_{a})^{T} + H_{a}^{T}H_{a}]x(t) \\ &+ x^{T}(t)[PD + D^{T}P]x(t - h(t)) + x^{T}(t)[(PE_{d})(PE_{d})^{T} + H_{d}^{T}H_{d}]x(t - h(t)) + x^{T}Qx(t) \\ &- e^{2\alpha h_{1}}x^{T}\left(t - h_{1}Qx(t - h_{2})\right) + e^{2\alpha h_{1}}x^{T}\left(t - h_{1}Qx(t - h_{1})\right) - e^{2\alpha h_{2}}x^{T}\left(t - h_{2}Qx(t - h_{2})\right) \\ &+ h_{1}^{2}\dot{x}^{T}(t)R\dot{x}(t) + x(t)\Phi_{1}h_{1}e^{-2\alpha h_{1}}x^{T}(t) + x(t - h_{1})\Phi_{4}h_{2}e^{-2\alpha h_{1}}x^{T}(t) \\ &+ \frac{1}{h_{1}}\int_{t - h_{1}}^{t}x(s)ds\Phi_{7}h_{1}e^{-2\alpha h_{1}}x^{T}(t) + x(t)\Phi_{2}h_{1}e^{-2\alpha h_{1}}x^{T}(t - h_{1}) \\ &+ x(t - h_{1})\Phi_{5}h_{1}e^{-2\alpha h_{1}}x^{T}(t - h_{1}) + \frac{1}{h_{1}}\int_{t - h_{1}}^{t}x(s)ds\Phi_{8}h_{1}e^{-2\alpha h_{1}}x^{T}(t - h_{1}) \\ &+ x(t)\Phi_{3}h_{1}e^{-2\alpha h_{1}}\left(\frac{1}{h_{1}}\int_{t - h_{1}}^{t}x(s)ds\right)^{T} + x(t - h_{1})\Phi_{6}h_{1}e^{-2\alpha h_{1}}\left(\frac{1}{h_{1}}\int_{t - h_{1}}^{t}x(s)ds\right)^{T} \end{split}$$

$$+ \frac{1}{h_1} \int_{t-h_1}^{t} x(s) ds \Phi_9 h_1 e^{-2\alpha h_1} \left(\frac{1}{h_1} \int_{t-h_1}^{t} x(s) ds \right)^T \\ + \frac{1}{h_2} \int_{t-h_2}^{t} x(s) ds \Psi_7 h_2 e^{-2\alpha h_2} x^T(t) + x(t) \Psi_2 h_2 e^{-2\alpha h_2} x^T(t-h_2) \\ + x(t-h_2) \Psi_5 h_2 e^{-2\alpha h_2} x^T(t-h_2) + \frac{1}{h_2} \int_{t-h_2}^{t} x(s) ds \Psi_8 h_2 e^{-2\alpha h_2} x^T(t-h_2) \\ + x(t) \Psi_3 h_2 e^{-2\alpha h_2} \left(\frac{1}{h_2} \int_{t-h_2}^{t} x(s) ds \right)^T + x(t-h_2) \Psi_6 h_2 e^{-2\alpha h_2} \left(\frac{1}{h_2} \int_{t-h_2}^{t} x(s) ds \right)^T \\ + \frac{1}{h_2} \int_{t-h_2}^{t} x(s) ds \Psi_9 h_2 e^{-2\alpha h_2} \left(\frac{1}{h_2} \int_{t-h_2}^{t} x(s) ds \right)^T + x(t-h_2) (h_2 - h_1) e^{-2\alpha h_2} \Omega_4 x^T(t-h_1) \\ + (h_2 - h_1)^2 \dot{x}^T(t) U \dot{x}(t) + x(t-h_1) (h_2 - h_1) e^{-2\alpha h_2} \Omega_1 x^T(t-h_1) \\ + \frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds (h_2 - h_1) e^{-2\alpha h_2} \Omega_7 x^T(t-h_1) \\ + x(t-h_1) (h_2 - h_1) e^{-2\alpha h_2} \Omega_2 x^T(t-h_2) + x(t-h_2) (h_2 - h_1) e^{-2\alpha h_2} \Omega_5 x^T(t-h_2) \\ + \frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds (h_2 - h_1) e^{-2\alpha h_2} \Omega_8 x^T(t-h_2) \\ + x(t-h_2) (h_2 - h_1) e^{-2\alpha h_2} \Omega_3 \left(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds \right)^T \\ + x(t-h_2) (h_2 - h_1) e^{-2\alpha h_2} \Omega_9 \left(\frac{1}{h_2 - h_1} \int_{t-h_2}^{t-h_1} x(s) ds \right)^T$$

$$(3.17)$$

By using the following identity relation

$$\dot{x}(t) - [A - \Delta A(t)]x(t) + [D - \Delta D(t)]x(t - h(t)) = 0 \ , \label{eq:constraint}$$
 we have

$$-2x^{T}(t)S_{1}\dot{x}(t)+2x^{T}(t)S_{1}[A+\Delta A(t)]x(t)+2x^{T}S_{1}[D+\Delta D(t)]x(t-h(t))=0$$
(3.18)

$$2x^{T}(t-h(t))S_{4}\dot{x}(t) - 2x^{T}(t-h(t))S_{4}[A+\Delta A(t)]x(t) - 2x^{T}(t-h(t))S_{4}[D+\Delta D(t)]x(t-h(t)) = 0$$
(3.19)

$$2\dot{x}^{T}(t)S_{8}\dot{x}(t) - 2\dot{x}^{T}(t)S_{8}[A + \Delta A(t)]x(t) - 2\dot{x}^{T}(t)S_{8}[D + \Delta D(t)]x(t - h(t)) = 0$$
(3.20)
From (3.17),(3.18),(3.19) and (3.20) , we have

$$\begin{split} \dot{V} + 2\alpha V &\leq x^{T}(t)[PA + A^{T}P]x(t) + x^{T}(t)[(PE_{a})(PE_{a})^{T} + H_{a}^{T}H_{a}]x(t) \\ &+ x^{T}(t)[PD + D^{T}P]x(t - h(t)) + x^{T}(t)[(PE_{d})(PE_{d})^{T} + H_{d}^{T}H_{d}]x(t - h(t)) + x^{T}Qx(t) \\ &- e^{2\alpha h_{1}}x^{T}\left(t - h_{1}Qx(t - h_{2})\right) + e^{2\alpha h_{1}}x^{T}\left(t - h_{1}Qx(t - h_{1})\right) \end{split}$$

$$\begin{split} &-e^{2ah_2}x^T \Big(t-h_2Qx(t-h_2)\Big)+h_1^2\dot{x}^T(t)R\dot{x}(t)+x(t)\Phi_1h_1e^{-2ah_1}x^T(t)\\ &+x(t-h_1)\Phi_4h_2e^{-2ah_1}x^T(t)+\frac{1}{h_1}\int_{t-h_1}^t x(s)ds\Phi_7h_1e^{-2ah_1}x^T(t)\\ &+x(t)\Phi_2h_1e^{-2ah_1}x^T(t-h_1)\frac{1}{h_1}\int_{t-h_1}^t x(s)ds\Phi_8h_1e^{-2ah_1}x^T(t-h_1)\\ &+x(t-h_1)\Phi_5h_1e^{-2ah_1}x^T(t-h_1)+x(t)\Phi_3h_1e^{-2ah_1}\Big(\frac{1}{h_1}\int_{t-h_1}^t x(s)ds\Big)^T\\ &+x(t-h_1)\Phi_6h_1e^{-2ah_2}\Big(\frac{1}{h_1}\int_{t-h_1}^t x(s)ds\Big)^T+\frac{1}{h_1}\int_{t-h_1}^t x(s)ds\Phi_9h_1e^{-2ah_2}\Big(\frac{1}{h_1}\int_{t-h_1}^t x(s)ds\Big)^T\\ &+\frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Psi_7h_2e^{-2ah_2}x^T(t)+x(t)\Psi_2h_2e^{-2ah_2}x^T(t-h_2)\\ &+x(t-h_2)\Psi_5h_2e^{-2ah_2}x^T(t-h_2)+\frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Psi_8h_2e^{-2ah_2}x^T(t-h_2)\\ &+x(t)\Psi_3h_2e^{-2ah_2}\Big(\frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Big)^T+x(t-h_2)\Psi_6h_2e^{-2ah_2}\Big(\frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Big)^T\\ &+\frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Psi_9h_2e^{-2ah_2}\Big(\frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Big)^T\\ &+\frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Psi_9h_2e^{-2ah_2}\Big(\frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Big)^T\\ &+\frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Psi_9h_2e^{-2ah_2}\Big(\frac{1}{h_2}\int_{t-h_2}^t x(s)ds\Big)^T\\ &+(h_2-h_1)^2\dot{x}^T(t)U\dot{x}(t)+x(t-h_1)(h_2-h_1)e^{-2ah_2}\Omega_1x^T(t-h_1)\\ &+x(t-h_2)(h_2-h_1)e^{-2ah_2}\Omega_3x^T(t-h_2)\\ &+\frac{1}{h_2-h_1}\int_{t-h_2}^{t-h_1} x(s)ds(h_2-h_1)e^{-2ah_2}\Omega_3x^T(t-h_2)\\ &+x(t-h_2)(h_2-h_1)e^{-2ah_2}\Omega_3\Big(\frac{1}{h_2-h_1}\int_{t-h_2}^{t-h_1} x(s)ds\Big)^T\\ &+x(t-h_2)(h_2-h_1)e^{-2ah_2}\Omega_3\Big(\frac{1}{h_2-h_1}\int_{t-h_2}^{t-h_1}$$

Hence, we have

$$\dot{V}(t,x_t) - 2\alpha V(t,x_t) \le \xi^T(t) M_1 \xi(t) + x^T(t) M_2 x(t) + x^T(t-h(t)) M_3 x(t-h(t))$$
(3.21)

By using the similar approach as in Theorem 3.1 with taking $S_1 = P, S_2 = S_3 = S_5 = S_6 = S_7 = 0, S_4 = \bar{S}1, S_8 = \bar{S}2$, we obtain

 $2PA+PE_aE_a^TP+PE_aE_a^TP+PE_dE_d^TP+\bar{S}_1E_aE_a^T\bar{S}_1+\bar{S}_2E_aE_a^T\bar{S}_2<0$ By equivalent , we have

$$\mathcal{M}_{2} = \begin{bmatrix} 2PA & PE_{a} & PE_{d} & \bar{S}_{1}E_{a} & \bar{S}_{2}E_{a} \\ * & -I & 0 & 0 & 0 \\ * & * & -I & 0 & 0 \\ * & * & * & -I & 0 \\ * & * & * & * & -I \end{bmatrix} < 0,$$
(3.22)

$$-2\bar{S}_1D + \bar{S}_1E_dE_d^T\bar{S}_1 + \bar{S}_2E_dE_d^T\bar{S}_2 < 0$$

By equivalent , we have

$$\mathcal{M}_{3} = \begin{bmatrix} -2\bar{S}_{1}D & \bar{S}_{1}E_{d} & \bar{S}_{2}E_{d} \\ * & -I & 0 \\ * & * & -I \end{bmatrix} < 0,$$

$$(3.23)$$

$$_{2} = 2PA + PE_{a}E_{a}^{T}P + PE_{d}E_{d}^{T}P + \bar{S}_{1}E_{a}E_{a}^{T}\bar{S}_{1} + \bar{S}_{2}E_{a}E_{a}^{T}\bar{S}_{2} < 0$$

$$\begin{split} M_2 &= 2PA + PE_a E_a^T P + PE_d E_d^T P + \bar{S}_1 E_a E_a^T \bar{S}_1 + \bar{S}_2 E_a E_a^T \bar{S}_2 < 0 \\ M_3 &= -2\bar{S}_1 D + \bar{S}_1 E_d E_d^T \bar{S}_1 + \bar{S}_2 E_d E_d^T \bar{S}_2 < 0 \end{split}$$

From (3.21), we have

$$\dot{V}(t, x_t) \leq -2\alpha V(t, x_t)$$

$$\frac{dV}{dt}(t, x_t) = -2\alpha V(t, x_t)$$
(3.25)

$$\therefore V(t, x_t) \le V(\phi)e^{-2\alpha t}, \quad \forall t \in R^+$$

From $\begin{aligned} \lambda_{\min} \|x(t)\|^2 &\leq V(t, x_t) \leq \lambda_{\max} \|x(t)\|^2 \\ \lambda_1 \|x(t, \phi)\|^2 &\leq V(x_t) \leq V(\phi) e^{-2\alpha t} \leq \lambda_2 e^{-2\alpha t} \|\phi\|^2 \\ \|x(t, \phi)\|^2 &\leq \frac{\lambda_2 e^{-2\alpha t} \|\phi\|^2}{\lambda_1} \\ &\leq \frac{\lambda_2}{\lambda_1} e^{-2\alpha t} \|\phi\|^2 . \end{aligned}$

Then, we have

$$\begin{split} \|x(t,\phi)\| &\leq \sqrt{(\frac{\lambda_2}{\lambda_1})e^{-2\alpha t}\|\phi\|^2} \\ &\leq \sqrt{\frac{\lambda_2}{\lambda_1}}e^{-\alpha t}\|\phi\|, \ t\in R^+ \end{split}$$

From definition 2.1, we concludes that the zero equation of system(2) is α - exponentially

stable.

4 Numerical Examples

In the sequel, we illustrate the effectiveness of the proposed method which yields a computationally solution to the exponential stability and robust stability in the context of LMIs. **Example 4.1** Consider the linear system with interval time-varying delay(3.1), where

$$A = \begin{bmatrix} -12.0000 & 0.0000\\ 0.0000 & -19.0000 \end{bmatrix}, D = \begin{bmatrix} -0.0002 & 0.004\\ 0.003 & -0.0005 \end{bmatrix},$$
$$h(t) = 0.1 + 0.4 \mid \sin^2 t \mid .$$

It is worth noting that, the delay function h(t) is non - differntiable. By using LMI Toolbox in MATLAB, the LMI (3.1) is feasible with $h_1 = 0.1000, h_2 = 0.5000, \alpha = 3.0000$ and

$$P = \begin{bmatrix} 2.2710 & 0.0097 \\ 0.0097 & 3.0316 \end{bmatrix} \cdot 10^{7}, \qquad Q = \begin{bmatrix} 0.8546 & -0.0011 \\ -0.0011 & 0.7895 \end{bmatrix} \cdot 10^{-13},$$

$$R = \begin{bmatrix} 2.2638 & 0.0001 \\ 0.0001 & 2.2525 \end{bmatrix} \cdot 10^{8}, \qquad U = \begin{bmatrix} 1.1778 & 0.0001 \\ 0.0001 & 1.1853 \end{bmatrix} \cdot 10^{8},$$

$$S_{1} = \begin{bmatrix} -6.6308 & 0.0158 \\ 0.0035 & -2.9118 \end{bmatrix} \cdot 10^{7}, S_{2} = \begin{bmatrix} -1.0084 & -0.0005 \\ -0.0036 & 0.0188 \end{bmatrix},$$

$$S_{3} = \begin{bmatrix} -1.2931 & 0.0020 \\ 0.0041 & -0.6819 \end{bmatrix}, \qquad S_{4} = \begin{bmatrix} -0.1460 & 0.9255 \\ 2.9367 & -0.1563 \end{bmatrix} \cdot 10^{4},$$

$$S_{5} = \begin{bmatrix} -2.2921 & -0.0018 \\ -0.0066 & -1.5879 \end{bmatrix} \cdot 10^{4}, S_{6} = \begin{bmatrix} 24.0437 & -0.0031 \\ -0.0031 & 15.6813 \end{bmatrix},$$

$$S_{7} = \begin{bmatrix} 19.7610 & -0.0017 \\ -0.0017 & 12.8688 \end{bmatrix}, \qquad S_{8} = \begin{bmatrix} 6.4856 & -0.0009 \\ -0.0099 & 4.2495 \end{bmatrix} \cdot 10^{7},$$

Moreover, the solution $x(t, \phi)$ of the system satisfies

$$||x(t,\phi)|| \le 7.2093 \cdot 10^{-13} ||\phi||, \forall t \in \mathbb{R}^+$$
.

The trajectory of the solution of system (1) in has been show in Figure 1.

Figure 1: The trajectory of the solution of system (1) in Example 4.1.

Table 1: Maximum allowable upper bounds h_2 of the time-varying delay for different values of the lower bounds h_1 .

Method	0.1	1.0
Zhang et al. (2016) [9]	4.7000	2.2000
Alexandre Seuret [1]	4.7100	2.2400
Hao-Tian Xu et al. [8]	4.6421	2.1630
Liu et al. $[5]$	4.4700	2.3820
Park et al. [6]	4.7800	2.4140
Lee et al. [4]	3.6400	2.4980
Theorem 3.1	4.8215	2.5546

Example 4.2 Consider the uncertain linear system with interval time-varying delay(2) with time delay function h(t) with $h_1 = 0.1000$, $h_2 = 3.1495$ and

$$A = \begin{bmatrix} 0.5 & 1 \\ -1 & -1 \end{bmatrix}, D = \begin{bmatrix} -1 & 0.3 \\ 0.2 & -0.5 \end{bmatrix},$$
$$Ha = \begin{bmatrix} 0.04 & 1 \\ -1 & -1 \end{bmatrix}, Hd = \begin{bmatrix} 0.04 & 1 \\ -1 & -1 \end{bmatrix},$$
$$Ea = \begin{bmatrix} -0.07 & 0.004 \\ 0.005 & 0.075 \end{bmatrix}, Ed = \begin{bmatrix} -0.045 & 0.002 \\ 0.001 & 0.04 \end{bmatrix}$$
$$h(t) = 0.1 + 0.4 | \sin^2 t |.$$

By using LMI Toolbox in MATLAB, the LMI (3.2) of theorem 3.2 are feasible with $\alpha=5$ and

$$P = \begin{bmatrix} 3.4056 & -1.8341 \\ -1.8341 & 7.1534 \end{bmatrix} \cdot 10^7, \qquad Q = \begin{bmatrix} 0.1700 & -0.0058 \\ -0.0058 & 0.1703 \end{bmatrix} \cdot 10^{-12},$$
$$R = \begin{bmatrix} 2.2195 & -0.0545 \\ -0.0545 & 2.4783 \end{bmatrix} \cdot 10^8, \qquad U = \begin{bmatrix} 1.0957 & 0.0195 \\ 0.0195 & 0.9966 \end{bmatrix} \cdot 10^8,$$
$$\bar{S}_1 = \begin{bmatrix} 0.0903 & -1.6926 \\ 0.6436 & -0.4598 \end{bmatrix} \cdot 10^8, \qquad \bar{S}_2 = \begin{bmatrix} 0.1525 & 1.3081 \\ 0.1319 & 0.6377 \end{bmatrix} \cdot 10^6.$$

Moreover, the solution $x(t, \phi)$ of the system satisfies

$$||x(t,\phi)|| \le 1.8041 \cdot 10^{-12} ||\phi||, \forall t \in \mathbb{R}^+$$
.

The trajectory of the solution of system (2) in has been show in Figure 2.

Figure 2: The trajectory of the solution of system (2) in Example 4.2.

5 Conclusion

In this paper, new delay-dependent conditions for the exponential stability of linear systems with non-differentiable interval time-varying delay have been derived in terms of solutions of LMIs. By introducing a set of improved Lyapunov-Krasovskii functional and using Free matrix based integral inequality, the conditions for the exponential stability of the systems have been established . In the future work, the Free matrix-based integral inequality may be applied to stability analysis of other systems such as neural network system, fuzzy system and switched system.

References

- Alexandre Seuret, Frederic Gouaisbaut, Allowable delay sets for the stability analysis of linear time-varying delay systems using a delay - dependent reciprocally convex lemma, *IFAC PapersOnLine* 50-1 (2017), 1275-1280.
- [2] O.M. Kwon, Ju H. Park, Delay-range-dependent stabilization of uncertain dynamic systems with interval time-varying delays, *Applied Mathematics and Computation* 208 (2009), 58 68.
- [3] W.I. Lee, S.Y. Lee, P. Park, Improved criteria on robust stability and \mathcal{H}_{∞} performance for linear systems with interval time-varying delays via new triple integral functionals, *Applied Mathematics and Computation* 243 (2014), 570 - 577.
- [4] S.Y.Lee, W.I. Lee, P. Park, Polynomials-based integral inequality for stability of linear systems with time-varying delays, *Journal of the Franklin Institute* 354 (2017), 20532067.
- [5] Y. Liu, L.-S. Hu, P. Shi, A novel approach on stabilization for linear systems with timevarying input delay, Applied Mathematics and Computation 218(10) (2012), 5937 - 5947.
- [6] P. Park,W.I. Lee, S.Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, *Journal of the Franklin Institute* 352(4) (2015), 1378 - 1396.
- [7] V.N. Phat, Y. Khongtham, K. Ratchagit, LMI approach exponential stability of linear systems with interval time-varying delays, *Linear Algebra and its Applications* 436 (2012), 243-251.
- [8] H.-T. Xu, C.-K. Zhang, L. Jiang, Jeremy Smith, Stability analysis of linear systems with two additive time-varying delays via delay-product-type Lyapunov functional, *Applied Mathematical Modelling* 45 (2017), 955964.
- C.-K. Zhang, Y. He, L.Jiang, M. Wu, H.-B. Zeng, Stability analysis of systems with timevarying delay via relaxed integral inequalities, *Systems and Control Letters* 92 (2016), 52 - 61.
- [10] J. Zhu, T. Qi, J. Chen, Small-gain stability conditions for linear systems with time-varying delays, Systems and Control Letters 81 (2015), 42 - 48.

MATLAB CODE

MATLAB CODE

1. MATLAB CODE for finding solution of examples 1

```
A=[-12,0;0,-19]; D=[-0.0002,0.004;0.003,-0.0005];h1=0.1;h2=0.5;
e=2.71828;b=1;
setlmis([]);
  P=lmivar(1,[2,1]);
  Q=lmivar(1,[2,1]);
  R=lmivar(1,[2,1]);
  U=lmivar(1,[2,1]);
  S1=lmivar(2,[2,2]);
  S2=lmivar(2,[2,2]);
  S3=lmivar(2,[2,2]);
  S4=lmivar(2,[2,2]);
  S5=lmivar(2,[2,2]);
  S6=lmivar(1,[2,1]);
  S7=lmivar(1,[2,1]);
  S8=lmivar(1,[2,1]);
  M11=lmivar(1,[2,1]);
  M21=lmivar(2,[2,2]);
  M31=lmivar(2,[2,2]);
  M22=lmivar(1,[2,1]);
  M32=lmivar(2,[2,2]);
  M12=lmivar(2,[2,2]);
  M13=lmivar(2,[2,2]);
  M23=lmivar(2,[2,2]);
  M33=lmivar(1,[2,1]);
  N11=lmivar(1,[2,1]);
  N12=lmivar(2,[2,2]);
  N13=lmivar(2,[2,2]);
  N21=lmivar(2,[2,2]);
  N22=lmivar(1,[2,1]);
  N23=lmivar(2,[2,2]);
  N31=lmivar(2,[2,2]);
  N32=lmivar(2,[2,2]);
  N33=lmivar(1,[2,1]);
  y11=lmivar(2,[2,2]);
  y12=lmivar(2,[2,2]);
  y13=lmivar(2,[2,2]);
  y21=lmivar(2,[2,2]);
  y22=lmivar(2,[2,2]);
  y23=lmivar(2,[2,2]);
  y31=lmivar(2,[2,2]);
  y32=lmivar(2,[2,2]);
  y33=lmivar(2,[2,2]);
  w11=lmivar(2,[2,2]);
  w12=lmivar(2,[2,2]);
  w13=lmivar(2,[2,2]);
  w21=lmivar(2,[2,2]);
  w22=lmivar(2,[2,2]);
  w23=lmivar(2,[2,2]);
  w31=lmivar(2,[2,2]);
```

```
w32=lmivar(2,[2,2]);
w33=lmivar(2,[2,2]);
lmiterm([1 1 1 P],A',1,'s'); % LMI #1: A'*P+P*A
lmiterm([1 1 1 Q],.5*2,1,'s'); % LMI #1: 2*Q (NON SYMMETRIC?)
lmiterm([1 1 1 M11],.5*h1*e^(-2*b*h1)*h1,-1,'s'); % LMI #1: -h1*e^(-
2*b*h1)*h1*M11 (NON SYMMETRIC?)
lmiterm([1 1 1 N11],.5*h1*e^(-2*b*h1)*(h1/3),-1,'s'); % LMI #1: -
h1*e^(-2*b*h1)*(h1/3)*N11 (NON SYMMETRIC?)
lmiterm([1 1 1 y11],.5*h1*e^(-2*b*h1),-1,'s'); % LMI #1: -h1*e^(-
2*b*h1)*y11 (NON SYMMETRIC?)
lmiterm([1 1 1 w11],.5*h1*e^(-2*b*h1),1,'s'); % LMI #1: h1*e^(-
2*b*h1)*w11 (NON SYMMETRIC?)
lmiterm([1 1 1 M11],.5*h2*e^(-2*b*h2)*h2,-1,'s'); % LMI #1: -h2*e^(-
2*b*h2)*h2*M11 (NON SYMMETRIC?)
lmiterm([1 1 1 N11],.5*h2*e^(-2*b*h2)*(h2/3),-1,'s'); % LMI #1:
-h2*e^(-2*b*h2)*(h2/3)*N11 (NON SYMMETRIC?)
lmiterm([1 1 1 y11],.5*h2*e^(-2*b*h2),-1,'s'); % LMI #1: -h2*e^(-
2*b*h2)*y11 (NON SYMMETRIC?)
lmiterm([1 1 1 w11],.5*h2*e^(-2*b*h2),1,'s'); % LMI #1: h2*e^(-
2*b*h2)*w11 (NON SYMMETRIC?)
lmiterm([1 1 1 S1],1,-A,'s'); % LMI #1: -S1*A-A'*S1'
lmiterm([1 2 1 M12],h1*e^(-2*b*h1)*h1,-1); % LMI #1: -h1*e^(-
2*b*h1)*h1*M12
lmiterm([1 2 1 N12],h1*e^(-2*b*h1)*(h1/3),-1); % LMI #1: -h1*e^(-
2*b*h1)*(h1/3)*N12
lmiterm([1 2 1 y11],h1*e^(-2*b*h1),1); % LMI #1: h1*e^(-2*b*h1)*y11
lmiterm([1 2 1 w11], h1*e^(-2*b*h1), 1); % LMI #1: h1*e^(-2*b*h1)*w11
lmiterm([1 2 1 S2],1,-A); % LMI #1: -S2*A
lmiterm([1 2 1 -M21],h1*e^(-2*b*h1)*h1,-1); % LMI #1: -h1*e^(-
2*b*h1)*h1*M21'
lmiterm([1 2 1 -N21],h1*e^(-2*b*h1)*(h1/3),-1); % LMI #1: -h1*e^(-
2*b*h1)*(h1/3)*N21'
lmiterm([1 2 1 -y21],h1*e^(-2*b*h1),-1); % LMI #1: -h1*e^(-
2*b*h1)*y21'
lmiterm([1 2 1 -w21],h1*e^(-2*b*h1),1); % LMI #1: h1*e^(-2*b*h1)*w21'
lmiterm([1 2 2 Q],.5*e^(2*b*h1),1,'s'); % LMI #1: e^(2*b*h1)*Q (NON
SYMMETRIC?)
lmiterm([1 2 2 M22],.5*h1*e^(-2*b*h1)*h1,-1,'s'); % LMI #1: -h1*e^(-
2*b*h1)*h1*M22 (NON SYMMETRIC?)
lmiterm([1 2 2 N22],.5*h1*e^(-2*b*h1)*(h1/3),-1,'s'); % LMI #1: -
h1*e^(-2*b*h1)*(h1/3)*N22 (NON SYMMETRIC?)
lmiterm([1 2 2 y21],.5*0.5*h1*e^(-2*b*h1),-1,'s'); % LMI #1: -
0.5*h1*e^(-2*b*h1)*y21 (NON SYMMETRIC?)
lmiterm([1 2 2 -y21],.5*0.5*h1*e^(-2*b*h1),-1,'s');
                                                       % LMI #1: -
0.5*h1*e^(-2*b*h1)*y21' (NON SYMMETRIC?)
lmiterm([1 2 2 w21],.5*0.5*h1*e^(-2*b*h1),1,'s'); % LMI #1:
0.5*h1*e^(-2*b*h1)*w21 (NON SYMMETRIC?)
lmiterm([1 2 2 -w21],.5*0.5*h1*e^(-2*b*h1),1,'s');
                                                       % LMI #1:
0.5*h1*e^(-2*b*h1)*w21' (NON SYMMETRIC?)
lmiterm([1 2 2 M11],.5*h2*e^(-2*b*h2)*h2,-1,'s'); % LMI #1: -
h2*e^(-2*b*h2)*h2*M11 (NON SYMMETRIC?)
lmiterm([1 2 2 M11],.5*h2*e^(-2*b*h2)*h1,1,'s'); % LMI #1: h2*e^(-
2*b*h2)*h1*M11 (NON SYMMETRIC?)
lmiterm([1 2 2 N11],.5*h2*e^(-2*b*h2)*(h2/3),-1,'s'); % LMI #1: -
h2*e^(-2*b*h2)*(h2/3)*N11 (NON SYMMETRIC?)
lmiterm([1 2 2 N11],.5*h2*e^(-2*b*h2)*(h1/3),1,'s'); % LMI #1:
```

h2*e^(-2*b*h2)*(h1/3)*N11 (NON SYMMETRIC?) lmiterm([1 2 2 y11],.5*h2*e^(-2*b*h2),-1,'s'); % LMI #1: -h2*e^(-2*b*h2)*y11 (NON SYMMETRIC?) lmiterm([1 2 2 w11],.5*h2*e^(-2*b*h2),1,'s'); % LMI #1: h2*e^(-2*b*h2)*w11 (NON SYMMETRIC?) lmiterm([1 2 2 M11],.5*h1*e^(-2*b*h2)*h2,-1,'s'); % LMI #1: h1*e^(-2*b*h2)*h2*M11 (NON SYMMETRIC?) lmiterm([1 2 2 M11],.5*h1*e^(-2*b*h2)*h1,1,'s'); % LMI #1: h1*e^(-2*b*h2)*h1*M11 (NON SYMMETRIC?) % LMI #1: lmiterm([1 2 2 N11],.5*h1*e^(-2*b*h2)*(h2/3),-1,'s'); h1*e^(-2*b*h2)*(h2/3)*N11 (NON SYMMETRIC?) lmiterm([1 2 2 N11],.5*h1*e^(-2*b*h2)*(h1/3),1,'s'); % LMI #1: h1*e^(-2*b*h2)*(h1/3)*N11 (NON SYMMETRIC?) lmiterm([1 2 2 y11],.5*h1*e^(-2*b*h2),-1,'s'); % LMI #1: -h1*e^(-2*b*h2)*y11 (NON SYMMETRIC?) lmiterm([1 2 2 w11],.5*h1*e^(-2*b*h2),1,'s'); % LMI #1: h1*e^(-2*b*h2)*w11 (NON SYMMETRIC?) lmiterm([1 3 1 M12],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M12 lmiterm([1 3 1 N12], h2*e^(-2*b*h2)*(h1/3), -1); % LMI #1: -h2*e^(-2*b*h2)*(h1/3)*N12 lmiterm([1 3 1 y11],h2*e^(-2*b*h2),1); % LMI #1: h2*e^(-2*b*h2)*y11 lmiterm([1 3 1 w11],h2*e^(-2*b*h2),1); % LMI #1: h2*e^(-2*b*h2)*w11 % LMI #1: −S3*A lmiterm([1 3 1 S3],1,-A); lmiterm([1 3 1 -M21],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M21' lmiterm([1 3 1 -N21],h2*e^(-2*b*h2)*(h1/3),-1); % LMI #1: -h2*e^(-2*b*h2)*(h1/3)*N21' % LMI #1: h2*e^(lmiterm([1 3 1 -y21],h2*e^(-2*b*h2),1); 2*b*h2)*y21' lmiterm([1 3 1 -w21],h2*e^(-2*b*h2),1); % LMI #1: h2*e^(-2*b*h2)*w21' lmiterm([1 3 2 M12],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M12 lmiterm([1 3 2 M12],h2*e^(-2*b*h2)*h1,1); % LMI #1: h2*e^(-2*b*h2)*h1*M12 lmiterm([1 3 2 N12], h2*e^(-2*b*h2)*(h2/3), -1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N12 lmiterm([1 3 2 N12],h2*e^(-2*b*h2)*(h1/3),1); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N12 lmiterm([1 3 2 y11],h2*e^(-2*b*h2),1); % LMI #1: h2*e^(-2*b*h2)*v11 lmiterm([1 3 2 w11],h2*e^(-2*b*h2),1); % LMI #1: h2*e^(-2*b*h2)*w11 lmiterm([1 3 2 M11],h1*e^(-2*b*h2)*h2,-1); % LMI #1: -h1*e^(-2*b*h2)*h2*M11 lmiterm([1 3 2 M11],h1*e^(-2*b*h2)*h1,-1); % LMI #1: -h1*e^(-2*b*h2)*h1*M11 lmiterm([1 3 2 N12],h1*e^(-2*b*h2)*(h2/3),1); % LMI #1: h1*e^(-2*b*h2)*(h2/3)*N12 lmiterm([1 3 2 N12],h1*e^(-2*b*h2)*(h1/3),-1); % LMI #1: -h1*e^(-2*b*h2)*(h1/3)*N12 lmiterm([1 3 2 y11],h1*e^(-2*b*h2),-1); % LMI #1: -h1*e^(-2*b*h2)*y11 lmiterm([1 3 2 w11],h1*e^(-2*b*h2),-1); % LMI #1: -h1*e^(-2*b*h2)*w11

lmiterm([1 3 2 -M12],h2*e^(-2*b*h2)*h1,-1); % LMI #1: -h2*e^(-2*b*h2)*h1*M12' lmiterm([1 3 2 -M21],h2*e^(-2*b*h2)*h1,1); % LMI #1: h2*e^(-2*b*h2)*h1*M21' % LMI #1: -h2*e^(lmiterm([1 3 2 -N21], h2*e^(-2*b*h2)*(h2/3),-1); 2*b*h2)*(h2/3)*N21' lmiterm([1 3 2 -N21],h2*e^(-2*b*h2)*(h1/3),1); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N21' % LMI #1: -h2*e^(lmiterm([1 3 2 -y21],h2*e^(-2*b*h2),-1); 2*b*h2)*y21' % LMI #1: h2*e^(lmiterm([1 3 2 -w21],h2*e^(-2*b*h2),1); 2*b*h2)*w21' % LMI #1: -h1*e^(lmiterm([1 3 2 -M21], h1*e^(-2*b*h2)*h2, -1); 2*b*h2)*h2*M21' lmiterm([1 3 2 -M21],h1*e^(-2*b*h2)*h1,1); % LMI #1: h1*e^(-2*b*h2)*h1*M21' lmiterm([1 3 2 -N21], h1*e^(-2*b*h2)*(h2/3), -1); % LMI #1: -h1*e^(-2*b*h2)*(h2/3)*N21' lmiterm([1 3 2 -N21], h2*e^(-2*b*h2)*(h1/3), 1); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N21' lmiterm([1 3 2 -y21],h1*e^(-2*b*h2),-1); % LMI #1: -h1*e^(-2*b*h2)*y21' lmiterm([1 3 2 -w21], h1*e^(-2*b*h2), 1); % LMI #1: h1*e^(-2*b*h2)*w21' lmiterm([1 3 2 Q],0.5*e^(2*b*h1),-1); % LMI #1: -0.5*e^(2*b*h1)*Q lmiterm([1 3 2 Q],0.5*e^(2*b*h2),-1); % LMI #1: -0.5*e^(2*b*h2)*Q lmiterm([1 3 3 Q],.5*e^(-2*b*h2),-1,'s'); % LMI #1: -e^(-2*b*h2)*Q (NON SYMMETRIC?) lmiterm([1 3 3 M22],.5*h2*e^(-2*b*h2)*h2,-1,'s'); % LMI #1: h2*e^(-2*b*h2)*h2*M22 (NON SYMMETRIC?) lmiterm([1 3 3 N22],.5*h2*e^(-2*b*h2)*(h2/3),-1,'s'); % LMI #1: h2*e^(-2*b*h2)*(h2/3)*N22 (NON SYMMETRIC?) lmiterm([1 3 3 y21],.5*h2*e^(-2*b*h2),1,'s'); % LMI #1: h2*e^(-2*b*h2)*y21 (NON SYMMETRIC?) lmiterm([1 3 3 w21],.5*h2*e^(-2*b*h2),1,'s'); % LMI #1: h2*e^(-2*b*h2)*w21 (NON SYMMETRIC?) lmiterm([1 3 3 M22],.5*h2*e^(-2*b*h2)*h2,-1,'s'); % LMI #1: h2*e^(-2*b*h2)*h2*M22 (NON SYMMETRIC?) lmiterm([1 3 3 M22],.5*h2*e^(-2*b*h2)*h1,1,'s'); % LMI #1: h2*e^(-2*b*h2)*h1*M22 (NON SYMMETRIC?) lmiterm([1 3 3 N22],.5*h2*e^(-2*b*h2)*(h2/3),-1,'s'); % LMI #1: h2*e^(-2*b*h2)*(h2/3)*N22 (NON SYMMETRIC?) lmiterm([1 3 3 N22],.5*h2*e^(-2*b*h2)*(h1/3),1,'s'); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N22 (NON SYMMETRIC?) lmiterm([1 3 3 -y21],.5*h2*e^(-2*b*h2),1,'s'); % LMI #1: h2*e^(-2*b*h2)*y21' (NON SYMMETRIC?) lmiterm([1 3 3 -w21],.5*h2*e^(-2*b*h2),1,'s'); % LMI #1: h2*e^(-2*b*h2)*w21' (NON SYMMETRIC?) lmiterm([1 3 3 M22],.5*h1*e^(-2*b*h2)*h2,1,'s'); % LMI #1: h1*e^(-2*b*h2)*h2*M22 (NON SYMMETRIC?) lmiterm([1 3 3 M22],.5*h1*e^(-2*b*h2)*h1,-1,'s'); % LMI #1: h1*e^(-2*b*h2)*h1*M22 (NON SYMMETRIC?) lmiterm([1 3 3 N22],.5*h1*e^(-2*b*h2)*(h2/3),1,'s'); % LMI #1: h1*e^(-2*b*h2)*(h2/3)*N22 (NON SYMMETRIC?) lmiterm([1 3 3 N22],.5*h1*e^(-2*b*h2)*(h1/3),-1,'s'); % LMI #1: h1*e^(-2*b*h2)*(h1/3)*N22 (NON SYMMETRIC?)

lmiterm([1 3 3 y21],.5*0.5*h1*e^(-2*b*h2),-1,'s'); % LMI #1: -0.5*h1*e^(-2*b*h2)*y21 (NON SYMMETRIC?) % LMI #1: lmiterm([1 3 3 -y21],.5*0.5*h1*e^(-2*b*h2),-1,'s'); 0.5*h1*e^(-2*b*h2)*y21' (NON SYMMETRIC?) lmiterm([1 3 3 w21],.5*0.5*h1*e^(-2*b*h2),-1,'s'); % LMI #1: -0.5*h1*e^(-2*b*h2)*w21 (NON SYMMETRIC?) % LMI #1: lmiterm([1 3 3 -w21],.5*0.5*h1*e^(-2*b*h2),-1,'s'); 0.5*h1*e^(-2*b*h2)*w21' (NON SYMMETRIC?) lmiterm([1 4 1 P],0.5*D',1); % LMI #1: 0.5*D'*P % LMI #1: 0.5*P*D lmiterm([1 4 1 P], 0.5, D); lmiterm([1 4 1 -S1], D', -1); % LMI #1: -D'*S1' lmiterm([1 4 1 S4],1,-A); % LMI #1: −S4*A lmiterm([1 4 2 -S2],D',-1); % LMI #1: -D'*S2' lmiterm([1 4 3 -S3], D', -1); % LMI #1: −D'*S3' lmiterm([1 4 4 S4],1,-D,'s'); % LMI #1: -S4*D-D'*S4' lmiterm([1 5 1 M13], h1*e^(-2*b*h1)*h1,-1); % LMI #1: -h1*e^(-2*b*h1)*h1*M13 lmiterm([1 5 1 N13],h1*e^(-2*b*h1)*(h1/3),-1); % LMI #1: -h1*e^(-2*b*h1)*(h1/3)*N13 lmiterm([1 5 1 w11],h1*e^(-2*b*h1)*2,-1); % LMI #1: -h1*e^(-2*b*h1)*2*w11 lmiterm([1 5 1 S5],1,-A); % LMI #1: −S5*A lmiterm([1 5 1 -M31],h1*e^(-2*b*h1)*h1,-1); % LMI #1: -h1*e^(-2*b*h1)*h1*M31' lmiterm([1 5 1 -N31],h1*e^(-2*b*h1)*(h1/3),-1); % LMI #1: -h1*e^(-2*b*h1)*(h1/3)*N31' lmiterm([1 5 1 -y31],h1*e^(-2*b*h1),-1); % LMI #1: -h1*e^(-2*b*h1)*y31' lmiterm([1 5 1 -w31], h1*e^(-2*b*h1), 1); % LMI #1: h1*e^(-2*b*h1)*w31' lmiterm([1 5 2 M23],h1*e^(-2*b*h1)*h1,-1); % LMI #1: -h1*e^(-2*b*h1)*h1*M23 lmiterm([1 5 2 N23],h1*e^(-2*b*h1)*(h1/3),-1); % LMI #1: -h1*e^(-2*b*h1)*(h1/3)*N23 lmiterm([1 5 2 w21],h1*e^(-2*b*h1)*2,-1); % LMI #1: -h1*e^(-2*b*h1)*2*w21 lmiterm([1 5 2 -M32],h1*e^(-2*b*h1)*h1,-1); % LMI #1: -h1*e^(-2*b*h1)*h1*M32' lmiterm([1 5 2 -N32],h1*e^(-2*b*h1)*(h1/3),-1); % LMI #1: -h1*e^(-2*b*h1)*(h1/3)*N32' lmiterm([1 5 2 -y31],h1*e^(-2*b*h1),1); % LMI #1: h1*e^(-2*b*h1)*y31' lmiterm([1 5 2 -w31], h1*e^(-2*b*h1), 1); % LMI #1: h1*e^(-2*b*h1)*w31' lmiterm([1 5 3 0],0); % LMI #1: 0 lmiterm([1 5 4 S5],1,-D); % LMI #1: −S5*D lmiterm([1 5 5 M33],.5*h1*e^(-2*b*h1)*h1,-1,'s'); % LMI #1: h1*e^(-2*b*h1)*h1*M33 (NON SYMMETRIC?) lmiterm([1 5 5 N33],.5*h1*e^(-2*b*h1)*(h1/3),-1,'s'); % LMI #1: h1*e^(-2*b*h1)*(h1/3)*N33 (NON SYMMETRIC?) lmiterm([1 5 5 w31],.5*h1*e^(-2*b*h1),-1,'s'); % LMI #1: -h1*e^(-2*b*h1)*w31 (NON SYMMETRIC?) lmiterm([1 5 5 -w31],.5*h1*e^(-2*b*h1),-1,'s'); % LMI #1: -h1*e^(-2*b*h1)*w31' (NON SYMMETRIC?) lmiterm([1 6 1 M13],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M13 lmiterm([1 6 1 N13],h2*e^(-2*b*h2)*(h2/3),-1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N13
% LMI #1: -h2*e^(lmiterm([1 6 1 w11],h2*e^(-2*b*h2)*2,-1); 2*b*h2)*2*w11 lmiterm([1 6 1 S6],1,-A); % LMI #1: −S6*A lmiterm([1 6 1 -M31],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M31' lmiterm([1 6 1 -N31],h2*e^(-2*b*h2)*(h2/3),-1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N31' % LMI #1: -h2*e^(lmiterm([1 6 1 -y31],h2*e^(-2*b*h2),-1); 2*b*h2)*y31' % LMI #1: h2*e^(lmiterm([1 6 1 -w31],h2*e^(-2*b*h2),1); 2*b*h2)*w31' lmiterm([1 6 2 0],0); % LMI #1: O lmiterm([1 6 3 M23],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M23 lmiterm([1 6 3 N23], h2*e^(-2*b*h2)*(h2/3), -1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N23 lmiterm([1 6 3 w11],h2*e^(-2*b*h2)*2,-1); % LMI #1: -h2*e^(-2*b*h2)*2*w11 lmiterm([1 6 3 -M32],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M32' lmiterm([1 6 3 -N32],h2*e^(-2*b*h2)*(h2/3),-1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N32' lmiterm([1 6 3 -y31],h2*e^(-2*b*h2),1); % LMI #1: h2*e^(-2*b*h2)*y31' lmiterm([1 6 3 w31],h2*e^(-2*b*h2),1); % LMI #1: h2*e^(-2*b*h2)*w31 lmiterm([1 6 4 S6],1,-D); % LMI #1: −S6*D lmiterm([1 6 5 0],0); % LMI #1: O lmiterm([1 6 6 M33],.5*h2*e^(-2*b*h2)*h2,-1,'s'); % LMI #1: h2*e^(-2*b*h2)*h2*M33 (NON SYMMETRIC?) lmiterm([1 6 6 N33],.5*h2*e^(-2*b*h2)*(h2/3),-1,'s'); % LMI #1: h2*e^(-2*b*h2)*(h2/3)*N33 (NON SYMMETRIC?) lmiterm([1 6 6 w31],.5*h2*e^(-2*b*h2),-1,'s'); % LMI #1: -h2*e^(-2*b*h2)*w31 (NON SYMMETRIC?) lmiterm([1 6 6 -w31],.5*h2*e^(-2*b*h2),-1,'s'); % LMI #1: -h2*e^(-2*b*h2)*w31' (NON SYMMETRIC?) lmiterm([1 7 1 S7],1,-A); % LMI #1: −S7*A lmiterm([1 7 2 M13],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M13 lmiterm([1 7 2 M13],h2*e^(-2*b*h2)*h1,1); % LMI #1: h2*e^(-2*b*h2)*h1*M13 lmiterm([1 7 2 N13], h2*e^(-2*b*h2)*(h2/3), -1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N13 lmiterm([1 7 2 N13],h2*e^(-2*b*h2)*(h1/3),1); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N13 lmiterm([1 7 2 w11],h2*e^(-2*b*h2)*2,-1); % LMI #1: -h2*e^(-2*b*h2)*2*w11 lmiterm([1 7 2 M13],h1*e^(-2*b*h2)*h2,1); % LMI #1: h1*e^(-2*b*h2)*h2*M13 lmiterm([1 7 2 M13], h1*e^(-2*b*h2), -1); % LMI #1: -h1*e^(-2*b*h2)*M13 lmiterm([1 7 2 N13],h1*e^(-2*b*h2)*(h2/3),1); % LMI #1: h1*e^(-2*b*h2)*(h2/3)*N13 lmiterm([1 7 2 N13], h1*e^(-2*b*h2)*(h1/3), -1); % LMI #1: -h1*e^(-2*b*h2)*(h1/3)*N13 lmiterm([1 7 2 w11],h1*e^(-2*b*h2)*2,1); % LMI #1: h1*e^(-2*b*h2)*2*w11 lmiterm([1 7 2 -M31],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-

lmiterm([1 7 2 -M31],h2*e^(-2*b*h2)*h1,1); % LMI #1: h2*e^(-2*b*h2)*h1*M31' % LMI #1: −h2*e^(lmiterm([1 7 2 -N31], h2*e^(-2*b*h2)*(h2/3), -1); 2*b*h2)*(h2/3)*N31' lmiterm([1 7 2 -N31],h2*e^(-2*b*h2)*(h1/3),1); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N31' % LMI #1: −h2*e^(lmiterm([1 7 2 -y31],h2*e^(-2*b*h2),-1); 2*b*h2)*y31' % LMI #1: h2*e^(lmiterm([1 7 2 -w31],h2*e^(-2*b*h2),1); 2*b*h2)*w31' % LMI #1: h1*e^(lmiterm([1 7 2 -M31],h1*e^(-2*b*h2)*h2,1); 2*b*h2)*h2*M31' % LMI #1: -h1*e^(lmiterm([1 7 2 -M31],h1*e^(-2*b*h2),-1); 2*b*h2)*M31' lmiterm([1 7 2 -N31],h1*e^(-2*b*h2)*(h2/3),1); % LMI #1: h1*e^(-2*b*h2)*(h2/3)*N31' lmiterm([1 7 2 -N31],h1*e^(-2*b*h2)*(h1/3),-1); % LMI #1: -h1*e^(-2*b*h2)*(h1/3)*N31' lmiterm([1 7 2 -y31],h1*e^(-2*b*h2),1); % LMI #1: h1*e^(-2*b*h2)*y31' lmiterm([1 7 2 -w31], h1*e^(-2*b*h2), -1); % LMI #1: -h1*e^(-2*b*h2)*w31' lmiterm([1 7 3 M23],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M23 lmiterm([1 7 3 M23],h2*e^(-2*b*h2)*h1,1); % LMI #1: h2*e^(-2*b*h2)*h1*M23 lmiterm([1 7 3 N23], h2*e^(-2*b*h2)*(h2/3), -1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N23 lmiterm([1 7 3 N23], h2*e^(-2*b*h2)*(h1/3),1); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N23 lmiterm([1 7 3 w21],h2*e^(-2*b*h2)*2,-1); % LMI #1: -h2*e^(-2*b*h2)*2*w21 lmiterm([1 7 3 M23],h1*e^(-2*b*h2)*h2,1); % LMI #1: h1*e^(-2*b*h2)*h2*M23 lmiterm([1 7 3 M23],h1*e^(-2*b*h2)*h1,-1); % LMI #1: -h1*e^(-2*b*h2)*h1*M23 lmiterm([1 7 3 N23],h1*e^(-2*b*h2)*(h2/3),1); % LMI #1: h1*e^(-2*b*h2)*(h2/3)*N23 lmiterm([1 7 3 N23], h1*e^(-2*b*h2)*(h1/3), -1); % LMI #1: -h1*e^(-2*b*h2)*(h1/3)*N23 lmiterm([1 7 3 w21], h1*e^(-2*b*h2)*2,1); % LMI #1: h1*e^(-2*b*h2)*2*w21 lmiterm([1 7 3 -M32],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M32' lmiterm([1 7 3 -M32],h2*e^(-2*b*h2)*h1,1); % LMI #1: h2*e^(-2*b*h2)*h1*M32' lmiterm([1 7 3 -N32],h2*e^(-2*b*h2)*(h2/3),-1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N32' lmiterm([1 7 3 -N32],h2*e^(-2*b*h2)*(h1/3),1); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N32' lmiterm([1 7 3 -y31],h2*e^(-2*b*h2),1); % LMI #1: h2*e^(-2*b*h2)*y31' lmiterm([1 7 3 -w31],h2*e^(-2*b*h2),1); % LMI #1: h2*e^(-2*b*h2)*w31' lmiterm([1 7 3 -M32],h1*e^(-2*b*h2)*h2,1); % LMI #1: h1*e^(-2*b*h2)*h2*M32' lmiterm([1 7 3 -M32],h1*e^(-2*b*h2)*h1,-1); % LMI #1: -h1*e^(-

2*b*h2)*h2*M31'

```
2*b*h2)*h1*M32'
lmiterm([1 7 3 -N32],h1*e^(-2*b*h2)*(h2/3),1); % LMI #1: h1*e^(-
2*b*h2)*(h2/3)*N32'
                                                 % LMI #1: -h1*e^(-
lmiterm([1 7 3 -N32], h1*e^(-2*b*h2)*(h1/3), -1);
2*b*h2)*(h1/3)*N32'
                                             % LMI #1: -h1*e^(-
lmiterm([1 7 3 -y31],h1*e^(-2*b*h2),-1);
2*b*h2)*y31'
lmiterm([1 7 3 -w31],h1*e^(-2*b*h2),-1);
                                              % LMI #1: -h1*e^(-
2*b*h2)*w31'
lmiterm([1 7 4 S7],1,-D);
                                               % LMI #1: −S7*D
lmiterm([1 7 5 0],0);
                                               % LMI #1: O
lmiterm([1 7 6 0],0);
                                               % LMI #1: O
lmiterm([1 7 7 M33],.5*h2*e^(-2*b*h2)*h2,-1,'s'); % LMI #1: -
h2*e^(-2*b*h2)*h2*M33 (NON SYMMETRIC?)
lmiterm([1 7 7 M33],.5*h2*e^(-2*b*h2)*h1,1,'s'); % LMI #1: h2*e^(-
2*b*h2)*h1*M33 (NON SYMMETRIC?)
lmiterm([1 7 7 N33],.5*h2*e^(-2*b*h2)*(h2/3),-1,'s');
                                                      8 LMI #1: -
h2*e^(-2*b*h2)*(h2/3)*N33 (NON SYMMETRIC?)
lmiterm([1 7 7 N33],.5*h2*e^(-2*b*h2)*(h1/3),1,'s'); % LMI #1:
h2*e^(-2*b*h2)*(h1/3)*N33 (NON SYMMETRIC?)
lmiterm([1 7 7 w31],.5*h2*e^(-2*b*h2),-1,'s'); % LMI #1: -h2*e^(-
2*b*h2)*w31 (NON SYMMETRIC?)
lmiterm([1 7 7 -w31],.5*h2*e^(-2*b*h2),-1,'s'); % LMI #1: -h2*e^(-
2*b*h2) *w31' (NON SYMMETRIC?)
lmiterm([1 7 7 M33],.5*h1*e^(-2*b*h2)*h2,1,'s');
                                                  % LMI #1: h1*e^(-
2*b*h2)*h2*M33 (NON SYMMETRIC?)
lmiterm([1 7 7 M33],.5*h1*e^(-2*b*h2)*h1,-1,'s'); % LMI #1: -
h1*e^(-2*b*h2)*h1*M33 (NON SYMMETRIC?)
lmiterm([1 7 7 N33],.5*h1*e^(-2*b*h2)*(h2/3),1,'s'); % LMI #1:
h1*e^(-2*b*h2)*(h2/3)*N33 (NON SYMMETRIC?)
lmiterm([1 7 7 N33],.5*h1*e^(-2*b*h2)*(h1/3),-1,'s'); % LMI #1: -
h1*e^(-2*b*h2)*(h1/3)*N33 (NON SYMMETRIC?)
lmiterm([1 7 7 w31],.5*h1*e^(-2*b*h2),1,'s'); % LMI #1: h1*e^(-
2*b*h2)*w31 (NON SYMMETRIC?)
lmiterm([1 7 7 -w31],.5*h1*e^(-2*b*h2),1,'s'); % LMI #1: h1*e^(-
2*b*h2)*w31' (NON SYMMETRIC?)
lmiterm([1 8 1 -S1],1,1);
                                               % LMI #1: S1'
lmiterm([1 8 1 S8],1,-A);
                                               % LMI #1: -S8*A
lmiterm([1 8 2 -S2],1,1);
                                              % LMI #1: S2'
lmiterm([1 8 3 -S3],1,1);
                                              % LMI #1: S3'
lmiterm([1 8 4 -S4],1,1);
                                              % LMI #1: S4'
lmiterm([1 8 4 S8],1,-D);
                                              % LMI #1: −S8*D
lmiterm([1 8 5 -S5],1,1);
                                              % LMI #1: S5'
lmiterm([1 8 6 S6],1,1);
                                              % LMI #1: S6
lmiterm([1 8 7 S7],1,1);
                                              % LMI #1: S7
lmiterm([1 8 8 R],.5*h1^2,1,'s');
                                              % LMI #1: h1^2*R (NON
SYMMETRIC?)
                                              % LMI #1: −h2^2*R (NON
lmiterm([1 8 8 R],.5*h2^2,-1,'s');
SYMMETRIC?)
lmiterm([1 8 8 U],.5*h2^2,1,'s');
                                              % LMI #1: h2^2*U (NON
SYMMETRIC?)
lmiterm([1 8 8 U],.5*2*h2*h1,1,'s');
                                              % LMI #1: 2*h2*h1*U
(NON SYMMETRIC?)
lmiterm([1 8 8 U],.5*h1^2,-1,'s');
                                              % LMI #1: −h1^2*U (NON
SYMMETRIC?)
lmiterm([1 8 8 S8],1,1,'s');
                                             % LMI #1: S8+S8'
```

<pre>lmiterm([-2 1 1 P],1,1);</pre>	olo	LMI	#2:	Ρ
<pre>lmiterm([-3 1 1 Q],1,1);</pre>	olo	LMI	#3: (Q
<pre>lmiterm([-4 1 1 R],1,1);</pre>	olo	LMI	#4: I	R
<pre>lmiterm([-5 1 1 U],1,1);</pre>	010	LMI	#5: 1	U
<pre>lmiterm([-6 1 1 S6],1,1);</pre>	010	LMI	#6:	S6
<pre>lmiterm([-7 1 1 S7],1,1);</pre>	010	LMI	#7:	s7
<pre>lmiterm([-8 1 1 S8],1,1);</pre>	00	LMI	#8:	S8
<pre>lmiterm([-9 1 1 M11],1,1);</pre>	00	LMI	#9: 1	M11
<pre>lmiterm([-10 1 1 M22],1,1);</pre>	00	LMI	#10:	M22
<pre>lmiterm([-11 1 1 M33],1,1);</pre>	00	LMI	#11:	М33
<pre>lmiterm([-12 1 1 N11],1,1);</pre>	00	LMI	#12:	N11
<pre>lmiterm([-13 1 1 N22],1,1);</pre>	00	LMI	#13:	N22
<pre>lmiterm([-14 1 1 N33],1,1);</pre>	00	LMI	#14:	N33
t=getlmis;				
<pre>[tmin,xfeas]=feasp(t) P=dec2mat(t,xfeas,P); Q =dec2mat(t,xfeas,Q); R =dec2mat(t,xfeas,R); U =dec2mat(t,xfeas,U); S1=dec2mat(t,xfeas,S1); S2=dec2mat(t,xfeas,S2); S3=dec2mat(t,xfeas,S3); S4=dec2mat(t,xfeas,S5); S6=dec2mat(t,xfeas,S6); S7=dec2mat(t,xfeas,S6); S7=dec2mat(t,xfeas,S8); M11=dec2mat(t,xfeas,M11); M21=dec2mat(t,xfeas,M21); M31=dec2mat(t,xfeas,M31); M22=dec2mat(t,xfeas,M32); M12=dec2mat(t,xfeas,M12); M12=dec2mat(t,xfeas,M13); M23=dec2mat(t,xfeas,M13); M23=dec2mat(t,xfeas,M23);</pre>				

M33=dec2mat(t,xfeas,M33); N11=dec2mat(t,xfeas,N11); N12=dec2mat(t,xfeas,N12); N13=dec2mat(t,xfeas,N13); N21=dec2mat(t,xfeas,N21); N22=dec2mat(t,xfeas,N22); N23=dec2mat(t,xfeas,N23);

```
N31=dec2mat(t,xfeas,N31);
N32=dec2mat(t,xfeas,N32);
N33=dec2mat(t,xfeas,N33);
y11=dec2mat(t,xfeas,y11);
y12=dec2mat(t,xfeas,y12);
y13=dec2mat(t,xfeas,y13);
y21=dec2mat(t,xfeas,y21);
y22=dec2mat(t,xfeas,y22);
y23=dec2mat(t,xfeas,y23);
y31=dec2mat(t,xfeas,y31);
y32=dec2mat(t,xfeas,y32);
y33=dec2mat(t,xfeas,y33);
w11=dec2mat(t,xfeas,w11);
w12=dec2mat(t,xfeas,w12);
w13=dec2mat(t,xfeas,w13);
w21=dec2mat(t,xfeas,w21);
w22=dec2mat(t,xfeas,w22);
w23=dec2mat(t,xfeas,w23);
w31=dec2mat(t,xfeas,w31);
w32=dec2mat(t,xfeas,w32);
w33=dec2mat(t,xfeas,w33);
tmin
```

2. MATLAB CODE for finding solution of examples 2

```
A = [0.5, 1; -1, -1]
 D = [-1, 0.3; 0.2, -0.5]
 O = [0, 0; 0, 0]
 h1=0.1
 h2=3.1495
b=5
e=2.7182
Ha=[0.04, 1; -1, -1]
Hd=[0.03,-0.002;0.001,0.06]
Ea=[-0.07,0.004;0.005,0.075]
Ed=[-0.045,0.002;0.001,0.04]
setlmis([]);
  P=lmivar(1,[2,1]);
  Q=lmivar(1,[2,1]);
  R=lmivar(1,[2,1]);
  U=lmivar(1,[2,1]);
  S1=lmivar(2,[2,2]);
  S2=lmivar(2,[2,2]);
  S3=lmivar(2,[2,2]);
  S4=lmivar(2,[2,2]);
  S5=lmivar(2,[2,2]);
  S6=lmivar(1,[2,1]);
  S7=lmivar(1,[2,1]);
  S8=lmivar(1,[2,1]);
  M11=lmivar(1,[2,1]);
  M21=lmivar(2,[2,2]);
  M31=lmivar(2,[2,2]);
  M22=lmivar(1,[2,1]);
  M32=lmivar(2,[2,2]);
  M12=lmivar(2,[2,2]);
  M13=lmivar(2,[2,2]);
  M23=lmivar(2,[2,2]);
  M33=lmivar(1,[2,1]);
  N11=lmivar(1,[2,1]);
  N12=lmivar(2,[2,2]);
  N13=lmivar(2,[2,2]);
  N21=lmivar(2,[2,2]);
  N22=lmivar(1,[2,1]);
  N23=lmivar(2,[2,2]);
  N31=lmivar(2,[2,2]);
  N32=lmivar(2,[2,2]);
  N33=lmivar(1,[2,1]);
  y11=lmivar(2,[2,2]);
  y12=lmivar(2,[2,2]);
  y13=lmivar(2,[2,2]);
  y21=lmivar(2,[2,2]);
  y22=lmivar(2,[2,2]);
  y23=lmivar(2,[2,2]);
  y31=lmivar(2,[2,2]);
  y32=lmivar(2,[2,2]);
  y33=lmivar(2,[2,2]);
  w11=lmivar(2,[2,2]);
  w12=lmivar(2,[2,2]);
  w13=lmivar(2,[2,2]);
```

```
w21=lmivar(2,[2,2]);
w22=lmivar(2,[2,2]);
w23=lmivar(2,[2,2]);
w31=lmivar(2,[2,2]);
w32=lmivar(2,[2,2]);
w33=lmivar(2,[2,2]);
lmiterm([1 1 1 P],A',1,'s');
                                             % LMI #1: A'*P+P*A
lmiterm([1 1 1 0],.5*2,1,'s');
                                             % LMI #1: 2*Q (NON
SYMMETRIC?)
lmiterm([1 1 1 M11],.5*h1*e^(-2*b*h1)*h1,-1,'s'); % LMI #1: -
h1*e^(-2*b*h1)*h1*M11 (NON SYMMETRIC?)
lmiterm([1 1 1 N11],.5*h1*e^(-2*b*h1)*(h1/3),-1,'s'); % LMI #1: -
h1*e^(-2*b*h1)*(h1/3)*N11 (NON SYMMETRIC?)
lmiterm([1 1 1 y11],.5*h1*e^(-2*b*h1),-1,'s'); % LMI #1: -h1*e^(-
2*b*h1)*y11 (NON SYMMETRIC?)
lmiterm([1 1 1 w11],.5*h1*e^(-2*b*h1),1,'s'); % LMI #1: h1*e^(-
2*b*h1)*w11 (NON SYMMETRIC?)
lmiterm([1 1 1 M11],.5*h2*e^(-2*b*h2)*h2,-1,'s'); % LMI #1: -
h2*e^(-2*b*h2)*h2*M11 (NON SYMMETRIC?)
lmiterm([1 1 1 N11],.5*h2*e^(-2*b*h2)*(h2/3),-1,'s'); % LMI #1: -
h2*e^(-2*b*h2)*(h2/3)*N11 (NON SYMMETRIC?)
lmiterm([1 1 1 y11],.5*h2*e^(-2*b*h2),-1,'s'); % LMI #1: -h2*e^(-
2*b*h2)*y11 (NON SYMMETRIC?)
lmiterm([1 1 1 w11],.5*h2*e^(-2*b*h2),1,'s'); % LMI #1: h2*e^(-
2*b*h2)*w11 (NON SYMMETRIC?)
lmiterm([1 1 1 S1],1,-A,'s');
                                             % LMI #1: -S1*A-A'*S1'
lmiterm([1 2 1 M12],h1*e^(-2*b*h1)*h1,-1); % LMI #1: -h1*e^(-
2*b*h1)*h1*M12
lmiterm([1 2 1 N12], h1*e^(-2*b*h1)*(h1/3), -1); % LMI #1: -h1*e^(-
2*b*h1)*(h1/3)*N12
lmiterm([1 2 1 y11], h1*e^(-2*b*h1),1); % LMI #1: h1*e^(-
2*b*h1)*y11
lmiterm([1 2 1 w11], h1*e^(-2*b*h1), 1); % LMI #1: h1*e^(-
2*b*h1)*w11
lmiterm([1 2 1 S2],1,-A);
                                             % LMI #1: -S2*A
lmiterm([1 2 1 -M21],h1*e^(-2*b*h1)*h1,-1); % LMI #1: -h1*e^(-
2*b*h1)*h1*M21'
lmiterm([1 2 1 -N21],h1*e^(-2*b*h1)*(h1/3),-1); % LMI #1: -h1*e^(-
2*b*h1)*(h1/3)*N21'
lmiterm([1 2 1 -y21],h1*e^(-2*b*h1),-1); % LMI #1: -h1*e^(-
2*b*h1)*y21'
lmiterm([1 2 1 -w21],h1*e^(-2*b*h1),1); % LMI #1: h1*e^(-
2*b*h1)*w21'
lmiterm([1 2 2 Q],.5*e^(2*b*h1),1,'s'); % LMI #1: e^(2*b*h1)*Q
(NON SYMMETRIC?)
lmiterm([1 2 2 M22],.5*h1*e^(-2*b*h1)*h1,-1,'s'); % LMI #1: -
h1*e^(-2*b*h1)*h1*M22 (NON SYMMETRIC?)
lmiterm([1 2 2 N22],.5*h1*e^(-2*b*h1)*(h1/3),-1,'s'); % LMI #1: -
h1*e^(-2*b*h1)*(h1/3)*N22 (NON SYMMETRIC?)
lmiterm([1 2 2 y21],.5*0.5*h1*e^(-2*b*h1),-1,'s'); % LMI #1: -
0.5*h1*e^(-2*b*h1)*y21 (NON SYMMETRIC?)
lmiterm([1 2 2 -y21],.5*0.5*h1*e^(-2*b*h1),-1,'s'); % LMI #1: -
0.5*h1*e^(-2*b*h1)*y21' (NON SYMMETRIC?)
lmiterm([1 2 2 w21],.5*0.5*h1*e^(-2*b*h1),1,'s'); % LMI #1:
0.5*h1*e^(-2*b*h1)*w21 (NON SYMMETRIC?)
lmiterm([1 2 2 -w21],.5*0.5*h1*e^(-2*b*h1),1,'s'); % LMI #1:
```

```
0.5*h1*e^(-2*b*h1)*w21' (NON SYMMETRIC?)
lmiterm([1 2 2 M11],.5*h2*e^(-2*b*h2)*h2,-1,'s');
                                                  % LMI #1: -
h2*e^(-2*b*h2)*h2*M11 (NON SYMMETRIC?)
lmiterm([1 2 2 M11],.5*h2*e^(-2*b*h2)*h1,1,'s'); % LMI #1: h2*e^(-
2*b*h2)*h1*M11 (NON SYMMETRIC?)
lmiterm([1 2 2 N11],.5*h2*e^(-2*b*h2)*(h2/3),-1,'s');
                                                      8 LMI #1: -
h2*e^(-2*b*h2)*(h2/3)*N11 (NON SYMMETRIC?)
lmiterm([1 2 2 N11],.5*h2*e^(-2*b*h2)*(h1/3),1,'s'); % LMI #1:
h2*e^(-2*b*h2)*(h1/3)*N11 (NON SYMMETRIC?)
lmiterm([1 2 2 y11],.5*h2*e^(-2*b*h2),-1,'s'); % LMI #1: -h2*e^(-
2*b*h2)*y11 (NON SYMMETRIC?)
lmiterm([1 2 2 w11],.5*h2*e^(-2*b*h2),1,'s'); % LMI #1: h2*e^(-
2*b*h2)*w11 (NON SYMMETRIC?)
lmiterm([1 2 2 M11],.5*h1*e^(-2*b*h2)*h2,-1,'s');
                                                 8 LMI #1: -
h1*e^(-2*b*h2)*h2*M11 (NON SYMMETRIC?)
lmiterm([1 2 2 M11],.5*h1*e^(-2*b*h2)*h1,1,'s'); % LMI #1: h1*e^(-
2*b*h2)*h1*M11 (NON SYMMETRIC?)
lmiterm([1 2 2 N11],.5*h1*e^(-2*b*h2)*(h2/3),-1,'s');
                                                     8 LMI #1: -
h1*e^(-2*b*h2)*(h2/3)*N11 (NON SYMMETRIC?)
lmiterm([1 2 2 N11],.5*h1*e^(-2*b*h2)*(h1/3),1,'s'); % LMI #1:
h1*e^(-2*b*h2)*(h1/3)*N11 (NON SYMMETRIC?)
lmiterm([1 2 2 y11],.5*h1*e^(-2*b*h2),-1,'s'); % LMI #1: -h1*e^(-
2*b*h2)*y11 (NON SYMMETRIC?)
lmiterm([1 2 2 w11],.5*h1*e^(-2*b*h2),1,'s'); % LMI #1: h1*e^(-
2*b*h2)*w11 (NON SYMMETRIC?)
lmiterm([1 3 1 M12],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-
2*b*h2)*h2*M12
lmiterm([1 3 1 N12],h2*e^(-2*b*h2)*(h1/3),-1); % LMI #1: -h2*e^(-
2*b*h2)*(h1/3)*N12
lmiterm([1 3 1 y11], h2*e^(-2*b*h2), 1);
                                            % LMI #1: h2*e^(-
2*b*h2)*y11
lmiterm([1 3 1 w11],h2*e^(-2*b*h2),1);
                                             % LMI #1: h2*e^(-
2*b*h2)*w11
lmiterm([1 3 1 S3],1,-A);
                                             % LMI #1: −S3*A
lmiterm([1 3 1 -M21],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-
2*b*h2)*h2*M21'
lmiterm([1 3 1 -N21],h2*e^(-2*b*h2)*(h1/3),-1); % LMI #1: -h2*e^(-
2*b*h2)*(h1/3)*N21'
lmiterm([1 3 1 -y21], h2*e^(-2*b*h2), 1); % LMI #1: h2*e^(-
2*b*h2)*y21'
lmiterm([1 3 1 -w21],h2*e^(-2*b*h2),1);
                                            % LMI #1: h2*e^(-
2*b*h2)*w21'
lmiterm([1 3 2 M12],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-
2*b*h2)*h2*M12
lmiterm([1 3 2 M12],h2*e^(-2*b*h2)*h1,1); % LMI #1: h2*e^(-
2*b*h2)*h1*M12
lmiterm([1 3 2 N12],h2*e^(-2*b*h2)*(h2/3),-1); % LMI #1: -h2*e^(-
2*b*h2)*(h2/3)*N12
lmiterm([1 3 2 N12],h2*e^(-2*b*h2)*(h1/3),1); % LMI #1: h2*e^(-
2*b*h2)*(h1/3)*N12
lmiterm([1 3 2 y11],h2*e^(-2*b*h2),1); % LMI #1: h2*e^(-
2*b*h2)*y11
lmiterm([1 3 2 w11], h2*e^(-2*b*h2),1);
                                            % LMI #1: h2*e^(-
2*b*h2)*w11
lmiterm([1 3 2 M11],h1*e^(-2*b*h2)*h2,-1); % LMI #1: -h1*e^(-
2*b*h2)*h2*M11
lmiterm([1 3 2 M11],h1*e^(-2*b*h2)*h1,-1); % LMI #1: -h1*e^(-
2*b*h2)*h1*M11
```

lmiterm([1 3 2 N12], h1*e^(-2*b*h2)*(h2/3),1); % LMI #1: h1*e^(-2*b*h2)*(h2/3)*N12 lmiterm([1 3 2 N12], h1*e^(-2*b*h2)*(h1/3), -1); % LMI #1: -h1*e^(-2*b*h2)*(h1/3)*N12 % LMI #1: -h1*e^(lmiterm([1 3 2 y11], h1*e^(-2*b*h2), -1); 2*b*h2)*y11 % LMI #1: -h1*e^(lmiterm([1 3 2 w11], h1*e^(-2*b*h2), -1); 2*b*h2)*w11 % LMI #1: -h2*e^(lmiterm([1 3 2 -M12],h2*e^(-2*b*h2)*h1,-1); 2*b*h2)*h1*M12' lmiterm([1 3 2 -M21],h2*e^(-2*b*h2)*h1,1); % LMI #1: h2*e^(-2*b*h2)*h1*M21' % LMI #1: -h2*e^(lmiterm([1 3 2 -N21], h2*e^(-2*b*h2)*(h2/3), -1); 2*b*h2)*(h2/3)*N21' lmiterm([1 3 2 -N21], h2*e^(-2*b*h2)*(h1/3),1); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N21' lmiterm([1 3 2 -y21],h2*e^(-2*b*h2),-1); % LMI #1: -h2*e^(-2*b*h2)*v21' lmiterm([1 3 2 -w21], h2*e^(-2*b*h2),1); % LMI #1: h2*e^(-2*b*h2)*w21' lmiterm([1 3 2 -M21], h1*e^(-2*b*h2)*h2, -1); % LMI #1: -h1*e^(-2*b*h2)*h2*M21' lmiterm([1 3 2 -M21],h1*e^(-2*b*h2)*h1,1); % LMI #1: h1*e^(-2*b*h2)*h1*M21' lmiterm([1 3 2 -N21],h1*e^(-2*b*h2)*(h2/3),-1); % LMI #1: -h1*e^(-2*b*h2)*(h2/3)*N21' lmiterm([1 3 2 -N21],h2*e^(-2*b*h2)*(h1/3),1); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N21' lmiterm([1 3 2 -y21],h1*e^(-2*b*h2),-1); % LMI #1: -h1*e^(-2*b*h2)*y21' lmiterm([1 3 2 -w21], h1*e^(-2*b*h2), 1); % LMI #1: h1*e^(-2*b*h2)*w21' lmiterm([1 3 2 Q], 0.5*e^(2*b*h1), -1); % LMI #1: -0.5*e^(2*b*h1)*Q lmiterm([1 3 2 Q], 0.5*e^(2*b*h2), -1); % LMI #1: -0.5*e^(2*b*h2)*Q lmiterm([1 3 3 Q],.5*e^(-2*b*h2),-1,'s'); % LMI #1: -e^(-2*b*h2)*Q (NON SYMMETRIC?) lmiterm([1 3 3 M22],.5*h2*e^(-2*b*h2)*h2,-1,'s'); % LMI #1: h2*e^(-2*b*h2)*h2*M22 (NON SYMMETRIC?) lmiterm([1 3 3 N22],.5*h2*e^(-2*b*h2)*(h2/3),-1,'s'); % LMI #1: h2*e^(-2*b*h2)*(h2/3)*N22 (NON SYMMETRIC?) lmiterm([1 3 3 y21],.5*h2*e^(-2*b*h2),1,'s'); % LMI #1: h2*e^(-2*b*h2)*v21 (NON SYMMETRIC?) lmiterm([1 3 3 w21],.5*h2*e^(-2*b*h2),1,'s'); % LMI #1: h2*e^(-2*b*h2)*w21 (NON SYMMETRIC?) lmiterm([1 3 3 M22],.5*h2*e^(-2*b*h2)*h2,-1,'s'); % LMI #1: h2*e^(-2*b*h2)*h2*M22 (NON SYMMETRIC?) lmiterm([1 3 3 M22],.5*h2*e^(-2*b*h2)*h1,1,'s'); % LMI #1: h2*e^(-2*b*h2)*h1*M22 (NON SYMMETRIC?) lmiterm([1 3 3 N22],.5*h2*e^(-2*b*h2)*(h2/3),-1,'s'); % LMI #1: h2*e^(-2*b*h2)*(h2/3)*N22 (NON SYMMETRIC?) lmiterm([1 3 3 N22],.5*h2*e^(-2*b*h2)*(h1/3),1,'s'); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N22 (NON SYMMETRIC?) lmiterm([1 3 3 -y21],.5*h2*e^(-2*b*h2),1,'s'); % LMI #1: h2*e^(-2*b*h2)*y21' (NON SYMMETRIC?) lmiterm([1 3 3 -w21],.5*h2*e^(-2*b*h2),1,'s'); % LMI #1: h2*e^(-2*b*h2)*w21' (NON SYMMETRIC?)

lmiterm([1 3 3 M22],.5*h1*e^(-2*b*h2)*h2,1,'s'); % LMI #1: h1*e^(-2*b*h2)*h2*M22 (NON SYMMETRIC?) lmiterm([1 3 3 M22],.5*h1*e^(-2*b*h2)*h1,-1,'s'); % LMI #1: h1*e^(-2*b*h2)*h1*M22 (NON SYMMETRIC?) lmiterm([1 3 3 N22],.5*h1*e^(-2*b*h2)*(h2/3),1,'s'); % LMI #1: h1*e^(-2*b*h2)*(h2/3)*N22 (NON SYMMETRIC?) lmiterm([1 3 3 N22],.5*h1*e^(-2*b*h2)*(h1/3),-1,'s'); % LMI #1: h1*e^(-2*b*h2)*(h1/3)*N22 (NON SYMMETRIC?) lmiterm([1 3 3 y21],.5*0.5*h1*e^(-2*b*h2),-1,'s'); % LMI #1: -0.5*h1*e^(-2*b*h2)*y21 (NON SYMMETRIC?) % LMI #1: lmiterm([1 3 3 -y21],.5*0.5*h1*e^(-2*b*h2),-1,'s'); 0.5*h1*e^(-2*b*h2)*y21' (NON SYMMETRIC?) lmiterm([1 3 3 w21],.5*0.5*h1*e^(-2*b*h2),-1,'s'); % LMI #1: -0.5*h1*e^(-2*b*h2)*w21 (NON SYMMETRIC?) lmiterm([1 3 3 -w21],.5*0.5*h1*e^(-2*b*h2),-1,'s'); % LMI #1: -0.5*h1*e^(-2*b*h2)*w21' (NON SYMMETRIC?) lmiterm([1 4 1 P],0.5*D',1); % LMI #1: 0.5*D'*P lmiterm([1 4 1 P],0.5,D); % LMI #1: 0.5*P*D lmiterm([1 4 1 -S1], D', -1); % LMI #1: -D'*S1' lmiterm([1 4 1 S4],1,-A); % LMI #1: −S4*A lmiterm([1 4 2 -S2],D',-1); % LMI #1: -D'*S2' lmiterm([1 4 3 -S3], D', -1); % LMI #1: -D'*S3' lmiterm([1 4 4 S4],1,-D,'s'); % LMI #1: -S4*D-D'*S4' lmiterm([1 5 1 M13],h1*e^(-2*b*h1)*h1,-1); % LMI #1: -h1*e^(-2*b*h1)*h1*M13 lmiterm([1 5 1 N13], h1*e^(-2*b*h1)*(h1/3), -1); % LMI #1: -h1*e^(-2*b*h1)*(h1/3)*N13 lmiterm([1 5 1 w11], h1*e^(-2*b*h1)*2,-1); % LMI #1: -h1*e^(-2*b*h1)*2*w11 lmiterm([1 5 1 S5],1,-A); % LMI #1: −S5*A lmiterm([1 5 1 -M31],h1*e^(-2*b*h1)*h1,-1); % LMI #1: -h1*e^(-2*b*h1)*h1*M31' lmiterm([1 5 1 -N31],h1*e^(-2*b*h1)*(h1/3),-1); % LMI #1: -h1*e^(-2*b*h1)*(h1/3)*N31' lmiterm([1 5 1 -y31],h1*e^(-2*b*h1),-1); % LMI #1: -h1*e^(-2*b*h1)*y31' lmiterm([1 5 1 -w31],h1*e^(-2*b*h1),1); % LMI #1: h1*e^(-2*b*h1)*w31' lmiterm([1 5 2 M23],h1*e^(-2*b*h1)*h1,-1); % LMI #1: -h1*e^(-2*b*h1)*h1*M23 lmiterm([1 5 2 N23], h1*e^(-2*b*h1)*(h1/3), -1); % LMI #1: -h1*e^(-2*b*h1)*(h1/3)*N23 lmiterm([1 5 2 w21],h1*e^(-2*b*h1)*2,-1); % LMI #1: -h1*e^(-2*b*h1)*2*w21 lmiterm([1 5 2 -M32],h1*e^(-2*b*h1)*h1,-1); % LMI #1: -h1*e^(-2*b*h1)*h1*M32' lmiterm([1 5 2 -N32],h1*e^(-2*b*h1)*(h1/3),-1); % LMI #1: -h1*e^(-2*b*h1)*(h1/3)*N32' lmiterm([1 5 2 -y31],h1*e^(-2*b*h1),1); % LMI #1: h1*e^(-2*b*h1)*y31' lmiterm([1 5 2 -w31],h1*e^(-2*b*h1),1); % LMI #1: h1*e^(-2*b*h1)*w31' lmiterm([1 5 3 0],0); % LMI #1: O lmiterm([1 5 4 S5],1,-D); % LMI #1: −S5*D lmiterm([1 5 5 M33],.5*h1*e^(-2*b*h1)*h1,-1,'s'); % LMI #1: h1*e^(-2*b*h1)*h1*M33 (NON SYMMETRIC?) lmiterm([1 5 5 N33],.5*h1*e^(-2*b*h1)*(h1/3),-1,'s'); % LMI #1: h1*e^(-2*b*h1)*(h1/3)*N33 (NON SYMMETRIC?)

lmiterm([1 5 5 w31],.5*h1*e^(-2*b*h1),-1,'s'); % LMI #1: -h1*e^(-2*b*h1)*w31 (NON SYMMETRIC?) lmiterm([1 5 5 -w31],.5*h1*e^(-2*b*h1),-1,'s'); % LMI #1: -h1*e^(-2*b*h1)*w31' (NON SYMMETRIC?) lmiterm([1 6 1 M13],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M13 lmiterm([1 6 1 N13], h2*e^(-2*b*h2)*(h2/3), -1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N13 lmiterm([1 6 1 w11],h2*e^(-2*b*h2)*2,-1); % LMI #1: -h2*e^(-2*b*h2)*2*w11 lmiterm([1 6 1 S6],1,-A); % LMI #1: −S6*A lmiterm([1 6 1 -M31],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M31' lmiterm([1 6 1 -N31],h2*e^(-2*b*h2)*(h2/3),-1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N31' lmiterm([1 6 1 -y31],h2*e^(-2*b*h2),-1); % LMI #1: -h2*e^(-2*b*h2)*v31' % LMI #1: h2*e^(lmiterm([1 6 1 -w31],h2*e^(-2*b*h2),1); 2*b*h2)*w31' lmiterm([1 6 2 0],0); % LMI #1: O lmiterm([1 6 3 M23],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M23 lmiterm([1 6 3 N23], h2*e^(-2*b*h2)*(h2/3), -1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N23 lmiterm([1 6 3 w11],h2*e^(-2*b*h2)*2,-1); % LMI #1: -h2*e^(-2*b*h2)*2*w11 lmiterm([1 6 3 -M32],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M32' lmiterm([1 6 3 -N32],h2*e^(-2*b*h2)*(h2/3),-1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N32' lmiterm([1 6 3 -y31],h2*e^(-2*b*h2),1); % LMI #1: h2*e^(-2*b*h2)*y31' lmiterm([1 6 3 w31],h2*e^(-2*b*h2),1); % LMI #1: h2*e^(-2*b*h2)*w31 lmiterm([1 6 4 S6],1,-D); % LMI #1: −S6*D lmiterm([1 6 5 0],0); % LMI #1: O lmiterm([1 6 6 M33],.5*h2*e^(-2*b*h2)*h2,-1,'s'); % LMI #1: h2*e^(-2*b*h2)*h2*M33 (NON SYMMETRIC?) lmiterm([1 6 6 N33],.5*h2*e^(-2*b*h2)*(h2/3),-1,'s'); % LMI #1: h2*e^(-2*b*h2)*(h2/3)*N33 (NON SYMMETRIC?) lmiterm([1 6 6 w31],.5*h2*e^(-2*b*h2),-1,'s'); % LMI #1: -h2*e^(-2*b*h2)*w31 (NON SYMMETRIC?) lmiterm([1 6 6 -w31],.5*h2*e^(-2*b*h2),-1,'s'); % LMI #1: -h2*e^(-2*b*h2)*w31' (NON SYMMETRIC?) lmiterm([1 7 1 S7],1,-A); % LMI #1: −S7*A lmiterm([1 7 2 M13], h2*e^(-2*b*h2)*h2, -1); % LMI #1: -h2*e^(-2*b*h2)*h2*M13 lmiterm([1 7 2 M13],h2*e^(-2*b*h2)*h1,1); % LMI #1: h2*e^(-2*b*h2)*h1*M13 lmiterm([1 7 2 N13], h2*e^(-2*b*h2)*(h2/3), -1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N13 lmiterm([1 7 2 N13], h2*e^(-2*b*h2)*(h1/3),1); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N13 lmiterm([1 7 2 w11],h2*e^(-2*b*h2)*2,-1); % LMI #1: -h2*e^(-2*b*h2)*2*w11 lmiterm([1 7 2 M13],h1*e^(-2*b*h2)*h2,1); % LMI #1: h1*e^(-2*b*h2)*h2*M13 lmiterm([1 7 2 M13],h1*e^(-2*b*h2),-1); % LMI #1: -h1*e^(-

lmiterm([1 7 2 N13],h1*e^(-2*b*h2)*(h2/3),1); % LMI #1: h1*e^(-2*b*h2)*(h2/3)*N13 lmiterm([1 7 2 N13], h1*e^(-2*b*h2)*(h1/3), -1); % LMI #1: -h1*e^(-2*b*h2)*(h1/3)*N13 lmiterm([1 7 2 w11], h1*e^(-2*b*h2)*2,1); % LMI #1: h1*e^(-2*b*h2)*2*w11 lmiterm([1 7 2 -M31],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M31' lmiterm([1 7 2 -M31],h2*e^(-2*b*h2)*h1,1); % LMI #1: h2*e^(-2*b*h2)*h1*M31' % LMI #1: −h2*e^(lmiterm([1 7 2 -N31], h2*e^(-2*b*h2)*(h2/3), -1); 2*b*h2)*(h2/3)*N31' lmiterm([1 7 2 -N31], h2*e^(-2*b*h2)*(h1/3),1); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N31' lmiterm([1 7 2 -y31],h2*e^(-2*b*h2),-1); % LMI #1: -h2*e^(-2*b*h2)*v31' lmiterm([1 7 2 -w31], h2*e^(-2*b*h2), 1); % LMI #1: h2*e^(-2*b*h2)*w31' lmiterm([1 7 2 -M31], h1*e^(-2*b*h2)*h2,1); % LMI #1: h1*e^(-2*b*h2)*h2*M31' lmiterm([1 7 2 -M31],h1*e^(-2*b*h2),-1); % LMI #1: -h1*e^(-2*b*h2)*M31' lmiterm([1 7 2 -N31],h1*e^(-2*b*h2)*(h2/3),1); % LMI #1: h1*e^(-2*b*h2)*(h2/3)*N31' lmiterm([1 7 2 -N31],h1*e^(-2*b*h2)*(h1/3),-1); % LMI #1: -h1*e^(-2*b*h2)*(h1/3)*N31' lmiterm([1 7 2 -y31],h1*e^(-2*b*h2),1); % LMI #1: h1*e^(-2*b*h2)*y31' lmiterm([1 7 2 -w31], h1*e^(-2*b*h2), -1); % LMI #1: -h1*e^(-2*b*h2)*w31' % LMI #1: -h2*e^(lmiterm([1 7 3 M23],h2*e^(-2*b*h2)*h2,-1); 2*b*h2)*h2*M23 lmiterm([1 7 3 M23],h2*e^(-2*b*h2)*h1,1); % LMI #1: h2*e^(-2*b*h2)*h1*M23 lmiterm([1 7 3 N23], h2*e^(-2*b*h2)*(h2/3), -1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N23 lmiterm([1 7 3 N23], h2*e^(-2*b*h2)*(h1/3), 1); % LMI #1: h2*e^(-2*b*h2)*(h1/3)*N23 % LMI #1: -h2*e^(lmiterm([1 7 3 w21],h2*e^(-2*b*h2)*2,-1); 2*b*h2)*2*w21 lmiterm([1 7 3 M23], h1*e^(-2*b*h2)*h2,1); % LMI #1: h1*e^(-2*b*h2)*h2*M23 lmiterm([1 7 3 M23],h1*e^(-2*b*h2)*h1,-1); % LMI #1: -h1*e^(-2*b*h2)*h1*M23 lmiterm([1 7 3 N23], h1*e^(-2*b*h2)*(h2/3), 1); % LMI #1: h1*e^(-2*b*h2)*(h2/3)*N23 lmiterm([1 7 3 N23], h1*e^(-2*b*h2)*(h1/3), -1); % LMI #1: -h1*e^(-2*b*h2)*(h1/3)*N23 lmiterm([1 7 3 w21],h1*e^(-2*b*h2)*2,1); % LMI #1: h1*e^(-2*b*h2)*2*w21 lmiterm([1 7 3 -M32],h2*e^(-2*b*h2)*h2,-1); % LMI #1: -h2*e^(-2*b*h2)*h2*M32' lmiterm([1 7 3 -M32],h2*e^(-2*b*h2)*h1,1); % LMI #1: h2*e^(-2*b*h2)*h1*M32' lmiterm([1 7 3 -N32],h2*e^(-2*b*h2)*(h2/3),-1); % LMI #1: -h2*e^(-2*b*h2)*(h2/3)*N32' lmiterm([1 7 3 -N32],h2*e^(-2*b*h2)*(h1/3),1); % LMI #1: h2*e^(-

2*b*h2)*M13

```
2*b*h2)*(h1/3)*N32'
lmiterm([1 7 3 -y31],h2*e^(-2*b*h2),1);
                                              % LMI #1: h2*e^(-
2*b*h2)*y31'
                                              % LMI #1: h2*e^(-
lmiterm([1 7 3 -w31], h2*e^(-2*b*h2), 1);
2*b*h2)*w31'
                                              % LMI #1: h1*e^(-
lmiterm([1 7 3 -M32],h1*e^(-2*b*h2)*h2,1);
2*b*h2)*h2*M32'
                                            % LMI #1: −h1*e^(-
lmiterm([1 7 3 -M32],h1*e^(-2*b*h2)*h1,-1);
2*b*h2)*h1*M32'
lmiterm([1 7 3 -N32],h1*e^(-2*b*h2)*(h2/3),1); % LMI #1: h1*e^(-
2*b*h2)*(h2/3)*N32'
lmiterm([1 7 3 -N32], h1*e^(-2*b*h2)*(h1/3), -1);
                                                 % LMI #1: -h1*e^(-
2*b*h2)*(h1/3)*N32'
lmiterm([1 7 3 -y31], h1*e^(-2*b*h2), -1);
                                              % LMI #1: -h1*e^(-
2*b*h2)*y31'
lmiterm([1 7 3 -w31],h1*e^(-2*b*h2),-1);
                                              % LMI #1: -h1*e^(-
2*b*h2)*w31'
lmiterm([1 7 4 S7],1,-D);
                                               % LMI #1: −S7*D
lmiterm([1 7 5 0],0);
                                               % LMI #1: 0
lmiterm([1 7 6 0],0);
                                               % LMI #1: O
lmiterm([1 7 7 M33],.5*h2*e^(-2*b*h2)*h2,-1,'s'); % LMI #1: -
h2*e^(-2*b*h2)*h2*M33 (NON SYMMETRIC?)
lmiterm([1 7 7 M33],.5*h2*e^(-2*b*h2)*h1,1,'s'); % LMI #1: h2*e^(-
2*b*h2)*h1*M33 (NON SYMMETRIC?)
lmiterm([1 7 7 N33],.5*h2*e^(-2*b*h2)*(h2/3),-1,'s'); % LMI #1: -
h2*e^(-2*b*h2)*(h2/3)*N33 (NON SYMMETRIC?)
lmiterm([1 7 7 N33],.5*h2*e^(-2*b*h2)*(h1/3),1,'s'); % LMI #1:
h2*e^(-2*b*h2)*(h1/3)*N33 (NON SYMMETRIC?)
lmiterm([1 7 7 w31],.5*h2*e^(-2*b*h2),-1,'s'); % LMI #1: -h2*e^(-
2*b*h2)*w31 (NON SYMMETRIC?)
lmiterm([1 7 7 -w31],.5*h2*e^(-2*b*h2),-1,'s'); % LMI #1: -h2*e^(-
2*b*h2)*w31' (NON SYMMETRIC?)
                                                  % LMI #1: h1*e^(-
lmiterm([1 7 7 M33],.5*h1*e^(-2*b*h2)*h2,1,'s');
2*b*h2)*h2*M33 (NON SYMMETRIC?)
lmiterm([1 7 7 M33],.5*h1*e^(-2*b*h2)*h1,-1,'s'); % LMI #1: -
h1*e^(-2*b*h2)*h1*M33 (NON SYMMETRIC?)
lmiterm([1 7 7 N33],.5*h1*e^(-2*b*h2)*(h2/3),1,'s'); % LMI #1:
h1*e^(-2*b*h2)*(h2/3)*N33 (NON SYMMETRIC?)
lmiterm([1 7 7 N33],.5*h1*e^(-2*b*h2)*(h1/3),-1,'s'); % LMI #1: -
h1*e^(-2*b*h2)*(h1/3)*N33 (NON SYMMETRIC?)
lmiterm([1 7 7 w31],.5*h1*e^(-2*b*h2),1,'s'); % LMI #1: h1*e^(-
2*b*h2)*w31 (NON SYMMETRIC?)
lmiterm([1 7 7 -w31],.5*h1*e^(-2*b*h2),1,'s'); % LMI #1: h1*e^(-
2*b*h2)*w31' (NON SYMMETRIC?)
lmiterm([1 8 1 -S1],1,1);
                                               % LMI #1: S1'
                                               % LMI #1: -S8*A
lmiterm([1 8 1 S8],1,-A);
                                               % LMI #1: S2'
lmiterm([1 8 2 -S2],1,1);
lmiterm([1 8 3 -S3],1,1);
                                              % LMI #1: S3'
lmiterm([1 8 4 -S4],1,1);
                                              % LMI #1: S4'
lmiterm([1 8 4 S8],1,-D);
                                              % LMI #1: −S8*D
lmiterm([1 8 5 -S5],1,1);
                                              % LMI #1: S5'
                                              % LMI #1: S6
lmiterm([1 8 6 S6],1,1);
                                              % LMI #1: S7
lmiterm([1 8 7 S7],1,1);
lmiterm([1 8 8 R],.5*h1^2,1,'s');
                                              % LMI #1: h1^2*R (NON
SYMMETRIC?)
lmiterm([1 8 8 R],.5*h2^2,-1,'s');
                                              % LMI #1: −h2^2*R (NON
SYMMETRIC?)
lmiterm([1 8 8 U],.5*h2^2,1,'s');
                                             % LMI #1: h2^2*U (NON
```

```
SYMMETRIC?)
  lmiterm([1 8 8 U],.5*2*h2*h1,1,'s');
                                                  % LMI #1: 2*h2*h1*U
  (NON SYMMETRIC?)
                                                  % LMI #1: −h1^2*U (NON
  lmiterm([1 8 8 U],.5*h1^2,-1,'s');
  SYMMETRIC?)
                                                   % LMI #1: S8+S8'
  lmiterm([1 8 8 S8],1,1,'s');
  lmiterm([-2 1 1 P],1,1);
                                                   % LMI #2: P
  lmiterm([-3 1 1 Q],1,1);
                                                   % LMI #3: Q
  lmiterm([-4 1 1 R],1,1);
                                                   % LMI #4: R
  lmiterm([-5 1 1 U],1,1);
                                                   % LMI #5: U
  lmiterm([-6 1 1 S6],1,1);
                                                   % LMI #6: S6
  lmiterm([-7 1 1 S7],1,1);
                                                   % LMI #7: S7
                                                   % LMI #8: S8
  lmiterm([-8 1 1 S8],1,1);
  lmiterm([-9 1 1 M11],1,1);
                                                   % LMI #9: M11
                                                   % LMI #10: M22
  lmiterm([-10 1 1 M22],1,1);
                                                   % LMI #11: M33
  lmiterm([-11 1 1 M33],1,1);
  lmiterm([-12 1 1 N11],1,1);
                                                   % LMI #12: N11
                                                   % LMI #13: N22
  lmiterm([-13 1 1 N22],1,1);
  lmiterm([-14 1 1 N33],1,1);
                                                   % LMI #14: N33
  t=getlmis;
  [tmin, xfeas] = feasp(t)
 P=dec2mat(t, xfeas, P);
Q =dec2mat(t, xfeas, Q);
R =dec2mat(t, xfeas, R);
U =dec2mat(t,xfeas,U);
S1=dec2mat(t,xfeas,S1);
S2=dec2mat(t,xfeas,S2);
S3=dec2mat(t,xfeas,S3);
S4=dec2mat(t,xfeas,S5);
S6=dec2mat(t,xfeas,S6);
S7=dec2mat(t,xfeas,S7);
S8=dec2mat(t,xfeas,S8);
M11=dec2mat(t,xfeas,M11);
M21=dec2mat(t,xfeas,M21);
M31=dec2mat(t,xfeas,M31);
M22=dec2mat(t,xfeas,M22);
M32=dec2mat(t, xfeas, M32);
M12=dec2mat(t,xfeas,M12);
M13=dec2mat(t,xfeas,M13);
```

```
M23=dec2mat(t,xfeas,M23);
```

```
M33=dec2mat(t,xfeas,M33);
N11=dec2mat(t,xfeas,N11);
N12=dec2mat(t,xfeas,N12);
N13=dec2mat(t, xfeas, N13);
N21=dec2mat(t, xfeas, N21);
N22=dec2mat(t,xfeas,N22);
N23=dec2mat(t, xfeas, N23);
N31=dec2mat(t, xfeas, N31);
N32=dec2mat(t, xfeas, N32);
N33=dec2mat(t, xfeas, N33);
y11=dec2mat(t,xfeas,y11);
y12=dec2mat(t,xfeas,y12);
y13=dec2mat(t,xfeas,y13);
y21=dec2mat(t,xfeas,y21);
y22=dec2mat(t,xfeas,y22);
y23=dec2mat(t,xfeas,y23);
y31=dec2mat(t,xfeas,y31);
y32=dec2mat(t, xfeas, y32);
y33=dec2mat(t, xfeas, y33);
w11=dec2mat(t,xfeas,w11);
w12=dec2mat(t,xfeas,w12);
w13=dec2mat(t, xfeas, w13);
w21=dec2mat(t,xfeas,w21);
w22=dec2mat(t,xfeas,w22);
w23=dec2mat(t,xfeas,w23);
w31=dec2mat(t,xfeas,w31);
w32=dec2mat(t,xfeas,w32);
w33=dec2mat(t,xfeas,w33);
```

tmin

Name Surname	Kanokwan Nooponta
Date of Birth	16 June 1995
Education Background	Junior High School from Kasetsomboonwittayakom
	School in 2010, Kasetsomboon, Chaiyaphum,
	Thailand
	Senior High School from Kasetsomboonwittayakom
	School in 2013, Kasetsomboon, Chaiyaphum,
	Thailand
Address	House No. 381 Village No. 12
	Ban-Han sub-district, Kasetsomboon district,
	Chaiyaphum province 36120
Telephone Number	0821278010
E-mail	kanokwannooponta@gmail.com

Name Surname	Phatchara Thajeen
Date of Birth	28 September 1995
Education Background	Junior High School from Thawangphapittayakhom
	School in 2010, Thawangpha, Nan,
	Ihailand
	Senior High School from Thawangphapittayakhom
	School in 2013, Thawangpha, Nan,
	Thailand
Address	House No. 77 Village No. 1
	Sripoom sub-district, Thawangpha district,
	Nan province 55140
Telephone Number	0884001576
E-mail	Patchara28092538@gmail.com

Name Surname	Tacha jankoon
Date of Birth	24 December 1995
Education Background	Junior High School from Huaisakwittayakom School in 2010, Muang, Chiangrai , Thailand Senior High School from Huaisakwittayakom School in 2013, Muang , Chiangrai , Thailand
Address Telephone Number	House No. 6 Village No. 6 Chiang kiean sub-district, Thoeng district, Chiangrai province 57230 0640172652
E-mail	Tacha.jankoon@gmail.com

Exponential stability of linear systems with interval time-varying delays using a new bounding technique

2018