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ABSTRACT

In this paper, we studied subject of general split feasibility problem in Hilbert
space together with the strong convergence theorem proposed by Mohammad Eslamian
and Abdul Latif and expansion the proof line in each step to make it easier to
understand. Furthermore, we give an example of algorithm which satisfies all the

conditions in the main theorem and test its strong convergence.
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CHAPTER 1
Introduction

In this paper, we studied subject of the general split feasibility problem in
Hilbert space together with the strong convergence theorem proposed by Mohammad
Eslamian and Abdul Latif [26] and expansion the proof line in each step to make
it easier to understand. Furthermore, we give an example of the algorithm which
satisfies all the conditions in the main theorem and tests its strong convergence.

Let H and K be infinite-dimensional real Hilbert spaces, and let A : H — K
be a bounded linear operator. Let {C;}?_; and {Q;}/_; be the families of nonempty
closed convex subsets of A and K, respectively.

Our mentioned problem is a general split feasibility problem (GSFP) which

is to find a point z*, which
xr e ﬂ C; and Az*e ﬂ Q;. (1.1)
i=1 i=1

We denote by () the solution set of GSFP.
The following show some problem which correspond to our study.
(a) The convex feasibility problem (CFP) is formulated as the problem of

finding a point z* with the property:

(b) The split feasibility problem (SFP) is formulated as the problem of finding

a point z* with the property:
x*eC and Azx*€Q,

where (' and () are nonempty closed convex subsets of H and K, respectively.
(c) The multiple-set split feasibility problem (MSSFP) is formulated as the

problem of finding a point x* with the property:

xt e ﬁC’i and Az* € hQZ
i=1 i=1



We can see that (MSSFP) can be reduced to (SEP) if we take p = r = 1.

These problems can be applied in other disciplines such as the applications
of CFP in image restoration, computer tomograph and radiation therapy treatment
planning [1]. About soluing SFP, Censor and Elfving [2] recommended algorithm
in the setting of finite-dimensional Hilbert spaces and pointed out that SFP can be
used for soluing modelling inverse problems which arise from phase retrievals and
in medical image reconstruction [3]. Recently, it is found that the SFP can also be
applied to study the intensity-modulated radiation therapy; see, for example,[6,16] and
the references therein. Since then, a lot of work has been done for finding a solution
of SFP and MSSFP; see, for example,[2—-25]. Very recently, Xu [8] considered the
SFP in the setting of infinite-dimensional Hilbert spaces.

In [2], to solve the problem it depends on the existence of A~!. In [8],
Xu studied some algorithm and got both weak convergence and strong convergence
theorems for solving the SFP by using Mann’s algorithm and found that he can also
get the solution of the minimum-norm. In [7], Wang and Xu proved their proposed

cyclic algorithm as follow:
Tpy1 = Pc[n] (ZEn + yA*(PQM — I)Amn),

where [n] := n (mod p) , (mod function take values in {1,2,...p}), and v €
(0,2/||A||*). They found that {x,} generated by their algorithm convergence weakly
to the solution of MSSFP. Recently, they studied in case of the strongly convergence
theorem for solving MSSFP in infinite dimensional Hilbert space, namely "General

split feasibility problem (GSFP)" as follows which is to find z* such that
¥ e m C; and Az" € ﬂ Qi
i=1 i=1

and denote its solution set as {2.
Recently, Eslamian and Latif [26], proposed the viscosity iterative algorithm

to solve GSFP in Hilbert space by improving all the results in the literature.



In this paper, we study the convergence theorem by Mohammad Eslamian

and Abdul Latif whose steps are the solution to the GSFP:

Tog1t = Ay + Buf(x0) + D milo,(I = MiA*(I = Po)A)x,, n >0,

i=1

then, the sequence {x,} converges strongly to z* € Q, where z* = P, f(z").



CHAPTER 11

Preliminaries and lemma

2.1 Preliminaries

Definition 2.1.1 /27] Linear operator

A operator T : X — Y from a vector space X to a vector space Y (with
the same scalar field K) is a linear operator if:

1. T(xq 4+ x2) =T(21) + T(22), V1,22 € X,

2. T(cx) =T (z), Ve e X, ce K.

We call such transformations linear operators.

Definition 2.1.2 [32] Bounded operator
A bounded operator T : X — Y between two Banach spaces satisfies the
inequality

T[] < cfl]l,

where c is a constant independent of the choice of © € X.

Definition 2.1.3 [32] Adjoint operator
The adjoint operator T* of an operator T in a Hilbert space H is an

operator such that
(T'x,y) = (z,T"y),

for all © and y in H.

Definition 2.1.4 [28] Fixed point
The point x is a fixed point of the mapping T if T(z) = .

Definition 2.1.5 [28] Normed space

Let X be a vector space. A map T : X — R, x — ||z|| is called a norm
on X if

(i) ||z|| > 0 for all x € X and ||x|| =0 if and only if © = 0;

(ii) ||az|| = |o|||z| for all x € X and o € K;



(iii) |z +y|| < ||z||+ lly|| for all x,y € X (triangle inequality).
We call (X ,

|.||) or simply X a normed space.

Definition 2.1.6 [30] Inner product space

An inner product space is a complex linear space X which for any pair
of element x and y in X there corresponds a complex number, denoted by (x,y),
and called the inner product of x and vy, with the following properties :

(i) (z,z) >0, (r,z) =0 < =0

(ii) (x+y,2) = (2,2) + (Y, 2);

(iii) {ax,y) = alz,y);

(iv) (z,y) = (y,x).

Definition 2.1.7 [31] Hilbert space
Let H be an inner product space. Then H is called a Hilbert space if for

each bounded sequence {x,} of H, there exists a weakly convergent subsequence
of {zn}.

Definition 2.1.8 [31] Closed set
Let H be a Hilbert space. A subset C of H is called a closed set if

{z,} c Candx, — zimplyz € C.

Definition 2.1.9 [29] Convex set
Let C be a subset of a Hilbert space H and scalar t € (0,1) then C is

said to be convex if
tr+(1—t)ye Clorallz,y e C

Definition 2.1.10 /27] Nonexpansive mapping
The mapping T : C' — C' is said to be nonexpansive mapping if

[Tz — Tyl < ||z —y| forallz,y € C.

Definition 2.1.11 [/30] Contraction
Let H be a Hilbert space. A mapping f : C — C' is called a contraction

on H if there is a positive real number o < 1 such that for all x,y € C

1f(x) = f(W)|l < allz —yl|, Yo,y € H.



Definition 2.1.12 [29] Strong convergence
A sequence {x,} in Hilbert space H is said to be strongly convergence

(or convergence in the norm) if there is an x € H such that

lim ||z, —z| = 0.

n—oo

2.2 Lemma

Throughout this independent study, we denote by H a real Hilbert space with
inner product (-,-) and norm || -||. Let {x,} be a sequence in H and x € H. Weak
convergence of {z,} to x is denoted by x,, — x, and strong convergence by z,, — z,
respectively. Let C' be a closed and convex subset of H. For every point x € H,

there exists a unique nearest point in C', denoted by Pox. This point satisfies
le = Pex| < |z —yll, VvyeC. (2.2)

The operator P is called the metric projection or the nearest point mapping
of H onto C. The metric projection P is characterized by the fact that Po(z) € C

and
(y — Po(z),x — Po(z)) <0, VexeHyeCl. (2.3)

It is well known that P is a nonexpansive mapping. It is also known that H satisfies

Opial’s condition, that is, for any sequence {z,} with x,, — z, the inequality
hﬂiol.}f |zn — 2| < h,?ig.}f |zn — yl| (2.4)
holds for every y € H with y # x.
Lemma 2.2.13 (see[21]). Let H be a Hilbert space. Then, for all x,y € H
Iz + ylI* < lll* + (y, 2 + ). 2.5)

Lemma 2.2.14 (see[22]). Let H be a Hilbert space, and let {x,} be a sequence
in H. Then, for any given sequence {\,}>>, C (0,1) with Y>>, A, = 1 and for

any positive integer i, with 1 < j,

I Al < 3 Al = Aody s — 2 @6)
n=1 n=1



Lemma 2.2.15 (see [23]). Assume that {a,} is a sequence of nonnegative real

numbers such that
An+41 S (1 - yn)a'n + ynén + ﬁna n 2 07 (27)

where {v,},{0,} and {\,} satisfy the following conditions:
(i) A € [0,1], 555, 70 = o0,
(ii) lim sup ,—.so0p <0 or Y 07 |7m0,| < 00,
(iii) B, >0 for all n >0 with Y 3, < cc.

Then, lim,,_,. a, = 0.

Lemma 2.2.16 (see [24]). Let {t,} be a sequence of real numbers such that
there exists a subsequence {n;} of {n} such that t,, < t, 1 for all i € N. Then,
there exists a nondecreasing sequence {T(n)} C N such that T(n) — oo, and the

following properties are satisfied by all (suffriently large) numbers n € N:

Lrtn) < trm)+1, tn < trn)41- (2.8)
In fact

7(n) = max{k <mn:tp <tgi1}. 2.9)

Lemma 2.2.17 (Demiclosedness principle [25]). Let C' be a nonempty closed and
convex subset of a real Hilbert space H. Let T : C' — C be a nonexpansive
mapping such that Fix(T) # (). Then, T is demiclosed on C, that is, if y, — z €
C, and (y, — Ty,) — y then (I —T)z =y.



CHAPTER III
Main result

In this chapter, we propose the study of general split feasibility problems in
hilbert spaces, which is the method for solving GSFP. We expand all the proof lines
in their theorem and give a numerical example which can explain how this algorithm

can solve the mentioned problem.

Theorem 3.1.18 [26] Let H and K be real Hilbert spaces, and Let A : H — K be
a bounded linear operator. Let {C;}2, and {Q;}2, be the families of nonempty
closed convex subset of H and K, respectively. Assume that GSFP(1.1) has a
nonempty solution set €). Suppose that f is a self k — contraction mapping of H,

and let {x,} be a sequence generated by xy € H as

Tpi1 = QnTy + Buf(x,) + ivn,iPCi(I — M A1 — Py,)A)z,, n >0,
i=1
where o, + B+ ooy Yni = 1. If the sequences {a,},{Bn}, {m:} and {\,;} satisfy
the following conditions:
(i) lim, oo B, =0 and > 7 3, = 00
(ii) for each i € N,liminf, o,7,; > 0,
(iii) for each i € N, {\,;} C (0,2/]|A]|?) and

0 < liminf, . < limsup,_ . i < 2/[|Al]%

then, the sequence {x,} converges strongly to x* € ), where x* = Py f(z*).

Proof. First, we show that {z,} is bounded. In fact, let z € Q. Since {\,;}
C (0,2/||AJ]*), the operators Pc,(I — \, ;A*(I — Pp,)A) are nonexpansive, and hence
we have

|z =2l = Nlwzn + Buf(2n) + Y WniPei(I = Mg A (I = P, ) A)an — 2|

=1

+ > i, (I = M A(1 = Po,) Az, — 2|

i=1



IN

|onan, — anz|| + || Buf (20) — Buz||
+loz + Bnz + i’Yn,iPa([ — M A1 — Py,)A)x, — 2|
i=1
= an||a;:—z||+ﬁn||f($n)—2|| .
HID D niPe, (I = MgAT(I = Po) A)zn — > mi(2)
1=1 i=1
an |z — 2| + Bull f(20) — 2|

+ 3 il P, (I = Mg A* (I — Po,) Az, — 2|

=1

= anllen =zl + Bull f(zn) — 2] + Z%,inn — 7

an+Z%z [z = 2]l + Bull f (za) — 2|
1- ﬁn)Hwn = 2|l + Bull f(2n) — =]l
L= B)llen = 2l + Bull f(2n) + (2) = f(2) = 2|
L= B)llen = 2l + 180f (n) + Buf (2) = Buf(2) = Buz|l
1= Bu)llzn = 2l + 18nf (2n) = Buf ()| + 1180 f (2) = Bu2|
) (@) =
)

IA

IN - IA

IN

IN

Tn

IA

(
(
(
(
(1= Bu)llzn = 2l + Bullf (zn) = F(2) + Bull f(2) — 2]l
(1= Bu)llzn = 2l + Bukllan — 2] + Bull £ (2) — 2|
(
(
(
(

IA

IN

1= B+ Buk)l[2n = 2| + Bull f(2) = 2|
1= (Bn = Buk))l[2n = 2] + Bull F(2) = 2|
1= (1= E)Bn)llzn — 2l + Bull f(2) — =]

< (= (=Bl =2l + (1= D2 1) =)
< max{la, — <, =2y
< max{lzo — [, ”f() Z”} (3.10)

which implies that {z,} is bounded and we also obtain that {f(x,)} is bounded.

Next, we show that for each 7 € N,

lm ||z, — Pe,(I — A A*(I — Po,)A)z,| = 0. 3.11)

n—oo
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By using Lemma 2.2.14, for every 2z € ) and 7 € N, we have that

||:En+1 - Z||2 = ”O-/nxn + ﬁnf(xn)
+ Z%Jpcj(f — AN = Po,) Az, — z||?
j=1
< O‘onn - Z”2 + ﬁn”f(er - 2”2

1+ il Pey (I = Mg AT(I = Po,) Az, — 2|

J=1

_an'Vn,iHPCi(] - /\miA*(I - PQ@')A)'T” - 1771”

||z, — 2”2 + Ban(xn) - 2”2 + Z'anj”xn - Z||2

<
j=1
— Vil P, (I — M i A™(I — Pg,)A)x, — anQ
S (1 - ﬁn)”xn - ZHQ + ﬁn”f(xn) - ZHQ

— Vil Poy (I — M i A*(I — Po,)A)z,, — x| (3.12)

Hence, for each ¢ € N we have

Oén'}/n,z'HPCi([ - PQZ)A>xn - anQ
< lwn = 2112 = Nlzngs — 212 + Bull f (@) — 2% (3.13)

Next, we show that there exists a unique x* € 2 such that z* = P, f(x*).
We observe that for each n > 0, 2* € (2 solves the GSFP (1.1) if and only if z* solves

the fixed point equation

¥ = Pc ([ - )\n,zA*(I - PQz)A)x*7 i€ N. (314)

i

that is, the solution sets of fixed point equation (20) and GSFP (1.1) are the same
(see for details [8]). Note that if {\,;} C (0,2/]|A||*), then the operators P, (I —

0

A, iA*(I — Pp,)A) are nonexpansive.
[Pe; (I = An g A" = P, ) A)x — Poi(I = A A™(1 = Fo,) A)yl|

< (I = A A = P, )A)x — (I — M\ i AT(1 — Po,)A)yll
< (@ = A AN = Pg,)Ax) — (y — M A™(1 — Pg,) Ay)||
< (@ = MiATAx + N, ;AT P, Ax) — (y — M\ii AT Ay + N, A" Po, Ay) ||
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< lw = At + A APy, Ax — y + iy — A APy, Ayl
< (& =y) = Anile = )l + [|AniA" P, Az = )|
= (1= An)llz = yll + A A" P Az — y)|
< (1= Aa)llz = yll + Anil Po, Az — )
< (T =2Aa)llz =yl + Al Alz = 9)
< (T =2Ad)llz =yl + Anillz =y
(

L= i + Ani)llz — 9
= llz—yl.
So that
[Pe, (I = AniA™(I = Po,)A)x — Pe,(I = AniA™(I — P, ) Ayl < ||z —yll.
Since the fixed point set of nonexpansive operators is closed and convex, the

projection onto the solution set €2 is well defined whenever §2 = ().

[1Pa(f)(x) = Pa(H) W) < [If(x) = FW)Il < Kz =yl (3.15)

It is obvious that Py(f) is a contraction of H into itself and actually, we can claim that
Py, is nonexpansive. Hence, there exists a unique element z* such that 2* = Py f(z*).
In order to prove that x,, — x* as n — co, we consider two possible cases.
Case 1. Assume that {||z, — z*||} is a monotone sequence. In other words, for
no large enough, {||z, — *||},>n, is either nondecreasing or nonincreasing. Since
||xn, — x*|| is bounded we have ||z, — z*|| is convergent. Since lim, .., 5, = 0 and
{f(z,)} is bounded, from (3.13) we get that
. i l| Po, (I = A A1 = Po,)A)ay — 2> = 0. (3.16)
By assuming that liminf, A\,7,; > 0, we obtain
lim || Pe,(I — M A (I — Pg,)A)x, —x,|| =0, VieN. (3.17)
Now, we show that
limsup(f(z*) — 2%, z,, — 2*) <0. (3.18)

To show this inequality, we choose a subsequence {z,, } of {z,} such that

lim (f(z*) — 2", x,,, — 2*) = limsup(f(z*) — 2", z,, — 7). (3.19)

n—00 n—00



Since {z,} is bounded,

12

there exists a subsequence {x,, } of {z,,} which converges

weakly to w. Without loss of generality, we can assume that z,,, — w and A, ; —
\; € (0,2/]|Al]?) for each i € N. From(3.17), we have
| P (I = MA*(I = Po,) A), —

IA

IN

IN

[P, (I = NAY(I = Po,)A)xn — on
—Pe,(I — N\ A (I — Py,)A)z,
+Po, (I — M\ i A (I — Pg,)A)z,||

[ Pe; (I = AniA™(I = Pg,)A)ay,

—Po,(I — NA*(I — Pg,)A)x,||
+||Pe, (I — MiA*(1 — Pg,)A)zy — x|
(I = NA(I — Pg,)A)x, — xp

—(I = A AT = Po,)A)zn| + || Pe,
(I = XA (I — Pg,)A)z, — x|

[Ai = Anal[|AT(T = P, ) AX |

+||Po, (I — M\ i AY(I — Py,)A)z, — x| (3.20)

0 as n — 0.

Notice that for each ¢ € N, Pe, (I — A, ;A*(I — Py,)A) is nonexpansive. Thus, from

Lemma 2.2.17, we have

limsup(f(z*) — 2", z, —

n—oo

w € ). Therefore, it follows that

vy = lim (f(@%) =, —27) = (f(27) = 2", — 2)
< 0. (3.21)

Finally, we show that z,, — Pof(z*). Applying Lemma 2.2.13, we have that

1 — 27|

+ > niPo, (I = A iAT(I = Po) Az, — 2|
i=1
= |lanzn + Buf(x) + apnz™ — apx™ + Bua* — Ga”

+ Z/Y?MPCZ([ - )\nﬂA*(I — PQz)A)xn — x*HQ

=1



13

< [ = 0na®) + (Buf (@) — ™) + (0n” + Ba® — 2°)
- i Vi Po, (I — M i A*(I — Pg,)A)x, — o*||?

< N — ) + Bulfa) - o)
O aPell = Mg AL~ Po) AV, — 3 3t

< Non(en— %)+ Bulfa) — o)
£ 3 (P (T = A A1 = Po) A, — o)

< i — %)+ 3 i (Pon(] = AiA*(1 — Pg) AYaa — 2°)
ol () — )P

< feanlitn = 27) + 3 gns(Pes(l = Mg (1 — Pg) )iy — )
F2UBF(2) = )0 — 27)

< fnln — %) + 3 s Pesll — Mg (1 — Pg) A — )
V2B, f(@) — 2 2 — 2°)

< flanlon — %)+ 3 sl — )P
V2Bl () — 2, s — )

< 1 B — 2 4 200 () — 2 s — )

< (1= Bl — I 4 2B () — 2 T — 2°)

< (1= Bl — I 28l () — Fa), s — )
FRBF() = 2 T — 2°)

< (1= B n — P 28 ) — FE s — 2]
V() = 2 s — )

< (1= Bl — I+ 2Bk — s — 2]

+26,(f(x*) — 2", xpy — 7).
This implies that

Jenss = 2" 7 < (= Bullan — 2" 2 + 2Bukllen — & [[2ns1 — 2|

+26,(f(x*) — 2", xpiq — ")



< (1- ﬁn)QH% - x*Hz + Bk, — :E*||2 + Bkl Tn g1 — x*HQ
+26,(f(x*) — x*, xpy — x¥).
(1= Ba)llwn — 2™[1* + Bok{llzn — 2** + 041 — 277}

20, (S (27) — 27, wngy — 27)

IA

Thus,

[Zns1 — 2] = Bukllznr — 2P < (1= Bo)?l|lzn — 2*I° + Bukllzn — 2™
+28,(f(z*) — 2", xpyq — 7).
That is
(1= Bub)nss — "2 < (1= Bo)Pllen — 212 + Bkl — 271

+26,(f(x*) — 2",z — 7).

Hence,

(1- ﬂny + Bk, — x*HQ

l2ns1 — 2" <

= 1— B,k
+2ﬁn<f(m*) - :L‘*vxn-&-l - $*>
1— B,k
(1_5n)2+ﬁnk 2
< g e
(@)~ s — )

1 — Bk "

*||2

e ()~ s =)
- 1_2ﬁn+ﬁnk )2
/6721 *12
B — o g — 1)

14
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— k " .
R
21— k), BuM
ok o
P ) = T — )

< (A =m)llzn = 2" + nady

IN

where §,, = % + = (f(z*) — 2%, 2p41 — @*) and M = sup{||z, — z*[|* : n > 0}

and n, = 2(1 — k)B,/(1 — B.k).

It is easy to see that 1, — 0, >~ 7, = oo and limsup,,, . d, < 0. Hence,
by Lemma 2.2.15, the sequence {x,} converges strongly to z* = P, f(z").
Case 2. Assume that {x, — 2*} is not a monotone sequence. Then, we can define

an integer sequence {7(n)} for all n > ny (for some n, large enough) by
7(n) = max{k € N;k <n: |z — 2% < ||xgs1 — 2|}

Clearly, 7(n) is a nondecreasing sequence such that 7(n) — oo as n — oo

and for all n > ng,
27y = [ < [Ty 11 — 7.

From (3.13), we obtain that
Tim [P, (1 = Ay i A" = Pai) Ay = 2ol = 0.
Following an argument similar to that in Case 1, we have

lim Sup<f($*) - ZL'*, Tr(n)+1 — iE*> <0.

n—oo

And by similar argument, we have

2rmyr — 212 = Narmy@rmys1 + Brm) f (Trm))
+ nyr(n),ipci(l - )\T(n),ZA*<I - PQz)A)IT(n) - x*Hz
=1
= |larm)@rn) + Brm) f(Tr(n)) + Qr)2™ — Q) * + Br(my@”

—Brmyx” + Z’YT(n),iPCZ'([ = M) i AL = Po,) A) 7 (ny — 2|12

i=1
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IN

IN

IN

IN

IN

IN
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(e o) = Q) @) + (Brioy f (@) = Brimyz”)
+( SL’* + BT(n)a:* — SE*)

+Z%n iPoy (I = Ay s A% (I = Po,) A) 2y — 272
H@(l} ) — ) + By (f(27m)) — 27)

+<Z ’VT(n),zPCZ(I - )\T(n),zA*(I - PQz)A)xT(TL)

i=1
= e
i=1
||aT(n) (xf(n) - IL'*) + BT(TL) (f(xT(n)) - I'*)

+ ) Yo (Pe,(I = AruyiA™(I = P,) A)zr(y — )2

+ Z Vr(n)i(Po, (I = Arn) i A1 — Pg,) A)Tr(n) — 27)

*Z%n (P 1 = DetiA° (1 = Po) A = 2
—|—2<5T(n (f(z) = %), Tr(myp1 — =7
| (n) (T7(n) — )
> Yewi(Po,(I = Ay A™(I = Po,) A)zony — )|
=1
260 (f(Tr(n)) — ", Tr(ny1 — &7)
ey (@) = @) + D Aril@ry — 29I
=1
428,01 (5) = 21—
TEE s P——
26 (f (Tr(n)) — ", Tr(my1 — &7)
(1= B, Py — = P
428,01 (51) = 2,01~ )
(1- /67_("))2||x7'(n) —z*|?

267y ([ (#7(m)) — 2" + f(27) = f(2"), Ty — 27)



Thus,

Then,

||IT(N)+1 - x*HQ - ﬁ'r(n)k’HI—r(n)_;_l — I*HQ < (1 _ 6‘F(n))2|lxr(n) o

(1 o 67(”)]{)Hx"r(n)+1 - -17*“2

|Zr(my41 — T

IN

IA

*||2
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(1= Brin))? 7y — ™|
+20- () (f (Tr(n)) — F(27), Tr(ny+1 — )
28y (F (&) = &, Trpmys1 — )

(1= Brin))? 7y — ™|

28| f (2ry) = F@)2ryer — 27|

20,y (f(2") = 2", Tr(y41 — 7).

IN

IN

IN

(1= Brm)* 7 (my) — 2*|I?

428 kl| 7y = " [[|@ry+1 — 27|

207 (F(27) = 27, Zr (1 — 27)

(1= Brm)) |7y — 2|12

+Bruk{ 2y = 2°1% + 7y — 27}
+2B-(n)(f (") — 2%, Tr(n)11 — 27)

(1= B Pllrtey = 22 Briay bl iy — 27
8-y kT (ny1 — 272

+267(”)<f(x*> - $*,$T(n)+1 - «T*>

+0r i kllzrm) — |

+267(”)<f(x*) - $*>$T(n)+1 - .’L'*>

20y (f(#%) = 2%, Trny g1 — )
o (= Brw)® + Bl
B 1= Brmk
)1 + 2Br () (f (7%) = 2%, r(my11 — 7*)
- 1= Brmk
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< |2
26"'(”) * * *
+ 1— ﬁT(n)k <f(fﬂ ) xz 73:7'(71)4-1 z >
(=28 + B) + Bk e — 2
1= Brmyk T
267'(") * * *
+ 1 — ﬁ’r(n)k <f(33’ ) z 7~TT(n)+1 X >

= 277 () — |2

- /BT(n)k
B )
[T () — 2
gl |
267’(70 * * *
+m(f(x ) = T, Ty g1 — T)
21 — k)Brir
< (1- www — 22

1= Brmk "2(1—k)
1
+m<f(l’*) -7, Tr(n)+1 — :L“*>}

where 7;,) — 0, Zf;l Nrny = oo and limsup,, . d-;) < 0. Hence, by Lemma
2.2.15, we obtain lim, .« ||Z74) — 2*|| = 0 and lim, .o ||Z7()41 — 2*|| = 0.

Now, from Lemma 2.2.16, we have

o
IA

[ — 27
< max{|[zrm) — 27|, [[zn — 27|}

S ||$T(n)+l - fL‘*H,

therefore, {x,} converges strongly to z* = Py f(x*).



CHAPTER 1V
Numerical example

In this chapter, we propose some numerical example which support the main

theorem.

4.1 Numerical Example

Example 4.1.1 Let H = K =R and C € [0,1] and the other conditions as follow :

1 ( 2n+1 )’ ﬁn _ 2n+1

=1_ o0 =1 = _n_ =
Qp = D) 3n242 — 3n242° Zi:l Tni = 2 )\n,l - 1+5nax0 - 10,

flaa) = §(za), Av =35, A =%, C;=[0,1], Qi =[0,2].

First, we will check that all parameter satisfy all the condition in Main Theorem.
Setting

_ 2n+1
L. ﬁ” T 3n242°

since (3, has to satisfy the condition lim,,_,, 3, = 0 and Zf;l B, = 00

Consider the following,

2n+1
lim 5, = lim
n—oo n—00 371/2 —+ 2
2n 1
_ i 2
- 3n2 2
el

= 0.

Next, we show that Y >, /3, is divergent.

Let 3, = 2% and b, = %, consider

3n242
im — = lim - —
n—oo by, n—oo 3n? +2 1
2n? +n
= 1m
n—oo 3n? + 2
2
= 3

Therefore lim,, .o 5= = 3

2.
Such that Y >° | 5, = o0
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2. 3 mi =3

Let v,,; = m
Check
Sn = Yim o@D
=15+t 35 T 57 T+ mnETD-
By investigation m = 5(57=5 — 57)- hence
5= 40D+ 36— D+t hk - )
o 1)
- %[1 + (_% + %) + (_% + %> +ot (_2n1—1 + 2n1—1) - 2n1+1]
=301 - 2n1+1)'
Therefore lim,, o S, = lim,, o0 %(1 — inﬂ) = %(1 —0) = %
Consequently »"°, m =1
30 A = T

Since \,,; has to satisfy the condition \,,; C (0,2/||A||?) and 0 < liminf, . A,

N3

< limsup,,_ . A\ni < 2/||A||?. Consider the following,

lim A\,; = lim
n—00 ’ n—oo 1 + Hn

Such that A, ; = 5.
4. f(zn) = 3(xn)
Let f(x) = 2z, next we have to show that
1f () = F@)Il < Ellz = yll; & < (0,1).
Let z,y € H
1f (@) = f@)ll = 113z — 3yll
= 3llz —yll.

Hence, f is a contraction.



5.

6.

Az

A*x

T

= £ (Bounded linear operator)

2

We show that 5.1. A is bounded operator

5.2. A is linear operator.

5.1 Let Aacz%
|Az| < cf|z|
T
A = ||=
| Az|| 151
1
= el

5.2 Next, we show that A is a linear operator.
From Ax = 5, we have

521 Az +y) =2

2

522 Afex)=%<

So, Az = 5 is a Bounded linear operator.

= % (Adjoint operator)

Consider (Az,y) for all x,y € H as follows:
(Az,y) = (5,9)
A* be an adjoint operator of A, therefore
(Az,y) = (z, A*y).
It means that (z, A*y) = fzy, then
Ary = %y.
So, Az = Ax = 3.

21



7. C; =[0,1]
where
L,
Pox =4 0,
xz,
8. Qi =1[0,2]
where
2,
Po,x = 0,
xz,

x>1,
x <0,
z € [0,1].

T > 2,
r <0,

z €[0,2].

Next, we will construct the iteration process by follow the algorithm.

Hence,

Tn+1

=1
1 2n +1
= (5 - (m))zn + (
1 n

“(Po () — (——
+5(Felan = (75,

2n+1 . 2
3n2+2

)5 (@)

_PQiz?n

)z — =2 2))

22

After we run this algorithm by using Microsoft Excel with the setting xo = 10, we

can get the value of z,, as following :

n Ty

0 10

1 | 3.833333333

114 | 0.000175328

2.068181818

115 | 0.000162087

1.44338118

116 | 0.000149847

1.181113609

117 | 0.000138531

1.066287347

118 | 0.000128071

0.972168187

119 | 0.000118401

0.888685112

120 | 0.000109462

[o-BN N B e N BV, B O S

0.81385485

121 | 0.000101198

Table 1. The value of x,, generated by Example 4.1.1.
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Figure 1. The convergence of {z,} by Example 4.1.1.
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CHAPTER V

Conclusions

In this Chapter, we propose the conclusion of our study which consists of

the main theorem, and numerical examples as shown in the followings.

Theorem 5.1.1. [26] Let H and K be real Hilbert spaces, and Let A: H — K be a
bounded linear operator. Let {C;}2°, and {Q;}5°, be the families of nonemply closed
convex subset of [/ and K, respectively. Assume that GSFP (1.1) has a nonempty
solution set ). Suppose that f is a self k — contraction mapping of H, and let {z,}

be a sequence generated by xg € H as

Tp4+1 = Qpdy + ﬁnf(xn) + Z/Yn,iPCi(] - /\n,zA* (I - PQz)A)xm n Z O>

i=1

where o, + 0, + Yo, Yni = L. If the sequences {a, }, {5,}, {7} and {\,;} satisfy
the following conditions:

(i) lim, oo B, =0 and Y 2, 5, = 00

(ii) for each i € N, liminf, a,7,; > 0,

(iii) for each i € N, {\,.;} € (0,2/|/A||*) and

0 < liminf, .., <limsup,,_, . A < 2/[| A%,
then, the sequence {x,} converges strongly to z* € ), where z* = Po f(z*).

Next, we would like to show step proof of the theorem 5.1.1.

1. Find {z,} is bounded.

2. Find lim,, . ||zn, — P.,(I — A\pia*(I — Py,)A)z,|| = 0.

3. Show that there exists a unique z* € € such that z* = P, f(x*).
4. Prove that z,, — z* as  — oo.

- Case 1 Assume that {||z,, — z*||} is a monotone sequence.

- Case 2 Assume that {||z,, — z*||} is not a monotone sequence.

Example 5.1.1 Let H € R and C € [0, 1] and the other conditions as follow :

_ 1 /2n41 _ 2n+1 00 o1 . _n _
an - 5 (3n2+2>’ Bn - 3n2+27 Zizl ’777,,1 - )\TL,I - 1+5n° x(] - ]-0’

flz,) = %(mn), Ar =5, Aw=35, C; =01, Q;=1/0,2].
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After we run this algorithm by using Microsoft Excel with the setting xo = 10, we

can get the value of z,, as following :

n T, n T,
0 10
1 | 3.833333333 | 114 | 0.000175328
2.068181818 | 115 | 0.000162087
1.44338118 | 116 | 0.000149847
1.181113609 | 117 | 0.000138531
1.066287347 | 118 | 0.000128071
0.972168187 | 119 | 0.000118401
0.888685112 | 120 | 0.000109462
0.81385485 | 121 | 0.000101198

0| N NN W

Table 2. The value of x,, generated by Example 5.1.1.

12

10

A\
UK

=

13 57 91113151719212325272931333537394143454749515355575961

Figure 2. The convergence of {z,} by Example 5.1.1.
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