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CHAPTER I

Introduction

Let F; and E5 be two p-uniformly convex real Banach spaces which are also
uniformly smooth. Let C' and () be nonempty, closed and convex subsets of F; and
Es, respectively; Let A : £y — E5 be a bounded linear operator and A* : B — E}

be the adjoint of A which is defined by

(A*y,x) == (y, Azx), Yx € E\,y € Ej.

The split feasibility problem (SFP) is to find a point

x € C' such that Az € Q. (1.1.1)

We denote by Q = CNA Q) ={y € C: Ay € Q} the solution set of SFP. Then
we have that €2 is a closed and convex subset of Fj.

The SFP in finite-dimensional Hilbert spaces was introduced by Censor and
Elfving [8] for modelling inverse problems which arise from phase retrievals, medical
image reconstruction and recently in modelling of intensity modulated radiation ther-
apy. The SFP attracts the attention of many authors due to its application in signal
processing. Various algorithms and some interesting results have been invented to
solve it (see, for example, [1, 3, 4, 6, 14, 18, 19, 20, 30]).

For solving SFP, in p-uniformly convex and uniformly smooth real Banach

spaces, Schopfer et al [24] proposed the following algorithm: For x; € E; and

T = UoJg [Je, (2n) — ta A" g, (Axy, — Po(Axy))], n 2> 1, (1.1.2)

where I denotes the Bregman projection and J the duality mapping. Clearly, the

above algorithm covers the CQ-algorithm which was introduced by Byrne [7], which



is defined by
Tni1 = Po(xy, — pn A1 — Pg)Ax,), n>1, (1.1.3)

where p,, € (0, 0 jHQ) and Pr, Py are the metric projections on C' and (), respectively,

which is found to be a gradient-projection method in convex minimization as a special
case. It was proved that {z,} defined by (1.1.3) converges weakly to a solution of
SFP.

We observe that the operator norm ||A|| may not be calculated easily in
general. To overcome this difficulty, Lopez et al. [14] suggested the following self-
adaptive method, which permits step-size u, being selected self-adaptively in such a
way:

_ pnf(T,)
S 7 A a9

where p, € (0,4), f(z,) = 5||(I — Pg)Ax,||* and V f(z,) = A*(I — Pg)Ax, for all
n > 1. It was proved that the sequence {x,} defined by (1.1.4) converges weakly to
a solution of SFP.

Also, employing the idea of Halpern’s iteration, Ldpez et al. [14] proposed

the following iteration method:
Tpr1 = o+ (1 — a) Po(xy — i Vf(x,)), n>1, (1.1.5)

where {«a,} C [0,1], v € C and the step-size p, is chosen as above. It was
proved that {z,} defined by (1.1.5) converges strongly to a solution of SFP provided
lim,, oo o, = 0 and X0° oy, = 00. After that, there have been many modifications of
the CQ algorithm and the self-adaptive method established in the recent years (see
also [32, 33]).

In solving SFP, in p-uniformly convex and uniformly smooth real Banach



spaces, it was proved that the {x,} defined by (1.1.2) converges weakly to a solution
of SFP (1.1.1) provided the duality mapping J is weak-to-weak continuous and
t, € (0, (ﬁ)q%» where %—i—% = 1 and (|, is the uniform smoothness coefficient
of Fy. (See [26, 28]). Lately, Wang [30] modified the above algorithm (1.1.2) and
proved strong convergence by using the idea in the work of Nakajo and Takahashi
[217 in p-uniformly convex Banach spaces which is also uniformly smooth. The
main advantage of result of Wang [30] is that the weak-to-weak continuity of the
duality mapping, assumed in [?4] is dispensed with and strong convergence result
was achieved.

The class of left Bregman firmly nonexpansive mappings associated with
the Bregman distance induced by a convex function was introduced and studied by
Martin-Marques et al. [17]. If C' is a nonempty and closed subset of int(dom f),
where f is a Legendre and Fréchet differentiable function, and 7" : C' — int (dom f)
is a left Bregman strongly nonexpansive mapping, it is proved that F'(T) is closed
(see [17]). In addition, they have shown that this class of mappings is closed under
composition and convex combination and proved weak convergence of the Picard
iterative method to a fixed point of a mapping under suitable conditions (see [16]).
However, Picard iteration process has only weak convergence.

Recently, Shehu et al.[26] introduced an algorithm for solving split feasibility
problems and fixed point problems such that the strong convergence is guaranteed by
using Halpern’s iteration process. Let u € F; be fixed, u; € F; arbitrarily. Let {x,}

be the sequence generated by the following manner:

o = oLl T8 (un) — ta AT T8, (Au, — Po(Auy))],

upsr = Hedge(andg, () + (1 = an)Jg, (Txn)), n =1, (1.1.6)

where {a,} C (0,1). It was proved that if o, — 0, > >~ , = oo and ¢, €

<0, (m)r%), then {x,} generated by (1.1.6) converges strongly to a solution



of the SFP and fixed point of 7" which is a left Bregman strongly nonexpansive
mappings.

In this paper, motivated by the works of Lépez et al. [14] and Shehu et al.
[26], we introduce a new self-adaptive method for solving the split feasibility prob-
lem and the fixed point problem of left Bregman strongly nonexpansive mappings
in Banach spaces. We then prove its strong convergence of the sequence generated
by our scheme in p-uniformly convex real Banach spaces which are also uniformly
smooth. The advantage of our algorithm lies in the fact that step-sizes are dynami-
cally chosen and not depend on the operator norm. Numerical experiments and some
comparisons are included to show the effectiveness of the our algorithm. Our results
mainly improve the results of Shehu et al. [26] and also complement many other

results in the literature.



CHAPTER 1I

Preliminaries and lemmas

2.1 Preliminaries

In this section, we give some preliminaries which will be used in the sequel.

Definition 2.1.1 [35](Fixed point)
Let X be a nonempty set and 7" : X — X. We say that x € X is a fixed
point of 7' if

T(x)==x
and denote by Fiz(T') the set of all fixed points of T

Example 212 1. [f X =R and T(z) = 2> + 52 + 4, then Fiz(T) = {~2);
2. If X =R and T(x) =2* —z, then Fiz(T)=1{0,2};
3. If X=R and T(z) =x+5, then Fiz(T) = 0;
4. If X =R and T(xz) =z, then Fix(T) =R.

Definition 2.1.3 [37](Normed space)

Let X be a norm linear space over field K (R or C) and || - || : X — R* be
a function. Then || - || is said to be a norm if the following properties hold:

l. [[z|| > 0, and ||z|| =0 < x = 0;

2. ||azx|| = |a|||x| for all z € X and a € K;

3. ||z +y| < ||lz|| + ||ly|| for all 2,y € X (triangle inequality).

The ordered pair (X, || - ||) is called a normed space.



Example 2.1.4 Let X = R” is a normed space with the following norms :

n
x|y = Z|xz| forall x = (xy1,x9,..,x,) € R
-1

- 1/p
x|, = ( E \xi]p> forall © = (x1,29,..,2,) € R" and p € (1, 00);
i=1

[2]|ec = 11r£1?<>$l|xz| forall x = (x1,2,..,2,) € R".

Definition 2.1.5 [37](Convergent sequence)
A sequence {x,} in a normed space X is said to be convergent to z if

lim |z, —z| = 0. In this case, we write x,, — x or lim x, = x.

n—oo n—oo

Definition 2.1.6 [37](Cauchy sequence) A sequence {z,} in a normed space X is
said to be Cauchy if lim |z, —2,|| =0, i.e., for € > 0, there exists an integer

no € N such that ||z, — z,|| < € for all m,n > ny.

Definition 2.1.7 [37](Completeness)

The space X is said to be complete if every Cauchy sequence in X con-
verges (that is, has a limit which is an element of X.)

Expressed in terms of completeness, the Cauchy convergence criterion im-

plies the following.

Definition 2.1.8 [36](Banach space)
A normed space which is complete with respect to the metric induced by

the norm is called a Banach space.

Example 2.1.9 The simplest example of a Banach space is RY or CN with

the Euclidean norm.

Definition 2.1.10 [37](Strong convergence)
A sequence {x,} in a normed space X is said to be Strongly convergent (or

convergent in the norm) if there is an « € X such that lim ||z, — x| = 0.
n—oo



Definition 2.1.11 [37](Inner product space)

An inner product space is a vector space X with an inner product defined
on X. Here, an inner product on X is a mapping of X x X into the scalar field K
of X; that is, with every pair of vectors = and y there is associated a scalar which is
written by (x,y) and called the inner product of x and y, such that for all vectors
x, Yy, 2 and scalars o we have
T, x) >
(IP2) (z,z) =0 < x = 0;

{
{
(IP3) (az,y) = alz,y);
(z,y) =
{

(IP4) (z,y) = (y, z);

Proposition 2.1.12 [37](The Cauchy-Schwarz inequality)

Let X be an inner product space. Then the following holds:

(2, y)? < (z,z)(y,y) for all z,y € X, 2.1.1)

1.e.,

(=, )] < [yl for all z,y € X. (2.1.2)

Definition 2.1.13 [36](Hilbert space)
An inner product space which is complete with respect to the induced norm

is called a Hilbert space.

Definition 2.1.14 [37](Closed set)
Let (X,d) be a metric space. A subset U C X is called open if for every
x € X there exists » > 0 such that B(z,7) C U. A set U is called closed if its

complement X \ U is open.



Definition 2.1.15 [37](Convex set)
Let C' be a subset of a linear space X. Then C' is said to be convez if

(1—=XN)z+ Ay € C for all z,y € C and all scalar A € [0, 1].

Definition 2.1.16 [34](Convex function)

Let X be a linear space and f : X — (—o00, 00| be a function. Then f is
said to be conver if f(Ax + (1 —N)y) < Af(z)+ (1 = \)f(y) for all z,y € X and
A e 0,1].

Definition 2.1.17 [37](Bounded sequence)
A sequence {z,} in X is bounded if there exists M/ > 0 such that ||z, | < M

for all n € N.

Definition 2.1.18 [34](Bounded linear operator)
Let X and Y be normed spaces and 7' : X — Y be a linear operator. The

operator 7' is said to be bounded if there is a real number ¢ > 0 such that for all

rzeX,
[T]] < ef|]].
2.2 Lemmas
Let E be a real Banach space with norm || - ||, and £* denotes the Banach dual of £

endowed with the dual norm ||-||,. Let 1 < ¢ < 2 < p with %—l—é = 1. The modulus
of convexity g : [0,2] — [0,1] is defined as

=+ y

op(e) =inf{l — 9

el =1 =Nyl llz =yl = €}

E is called uniformly convex if dg(e) > 0 for any ¢ € (0,2] and p-uniformly
convex if there is a C, > 0 such that dg(e) > C,e? for any ¢ € (0,2]. The

modulus of smoothness pg(T) :[0,00) — [0,00) is defined by



_ {Ilfv +ryll+llz =7yl

pe(T) 9

Lzl = flyll = 13-

E' is called uni formly smooth if lin% pET(T) = 0 and g-uniformly smooth if there is a

Cy > 0 such that pg(7) < C,7? for any 7 > 0. The L, space is 2-uniformly convex
for 1 < p <2 and p-uniformly convex for p > 2. It is known that £ is p-uniformly
convex if and only if its dual £* is g-uniformly smooth (see [13]).

The duality mapping Jy, is one-to-one, single-valued and satisfies J, =
(JE.)~', where J&. the duality mapping of E* (see [2, 11, 23]). Here the duality

mapping Jb : E — 2E" defined by
Jp(x) ={T € E*: (2,7) = ||=|", |Z|| = [|=[|"~"}.
The duality mapping J% is said to be weak-to-weak continuous if
Tn =z = (Jpan,y) — (Jpz,y)

holds true for any y € E. It is worth noting that the ¢,(p > 1) space has such a
property, but the JL(p > 2) space does not share this property.

Let f: E — R, the Bregman distance with respect to f is defined as:

Af(ft,y):f(y)—f(l‘)—<f/(£L‘),y—£L‘>, $ay€E

It is worth noting that the duality mapping .J,, is in fact the derivative of the function

fp(x) = %||a:||p. Then the Bregman distance with respect to f, is given by

1 1
Ap(z,y) = 5H$Hp—<J§x,y>+]§Hyll”
1
= ];(\Iyllp — lzI”) + (Jpz, z — y)
1
= a(lle” — lylI") = (Jpx — Jpy, z).

We know the following inequality which was proved by Xu [31].
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Lemma 2.2.1 [31] Let z,y € E. If E is g-uniformly smooth, then there exists

C, > 0 such that
[z = yl|* < llz]|* = aly, Ji(x)) + Cyllyll*.

Let x,y,z € E, one can easily get

Ap(z,y) + Ap(y, 2) — Ap(z, 2) = (x — y, Joz — Joy), (2.2.1)
Ap(z,y) + Ap(y, x) = (x — vy, Jpx — Joy) (2.2.2)
and
x|? P
Syfary) = L0 B ), 23)

1,1
where -+ o = 1.
For the p-uniformly convex space, the metric and Bregman distance has the

following relation (see [24]):
Tl —y|P < Ay(x,y) < (x —vy, Jpr — Joy), (2.2.4)

where 7 > (0 is some fixed number.

Proposition 2.2.2 [5, 12] Let £ be a smooth and uniformly convex Banach space.
Let {z,} and {y,} be two sequences in £ such that A,(z,,y,) — 0. If {y,} is

bounded, then ||z, — y,|| — 0.
Let C be a nonempty, closed and convex subset of £. The metric projection

Pex = argmingeco|lz —y||, x € E,
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is the unique minimizer of the norm distance, which can be characterized by a

variational inequality:
(Jo(x — Pox),z — Pox) <0, VzeC. (2.2.5)

Likewise, one can define the Bregman projection:
Hex = argmingecAy(z,y), = € E,

as the unique minimizer of the Bregman distance (see [25]). The Bregman projection

can also be characterized by a variational inequality:
(Jo(x) — Jp(ex), z — Hex) <0, VzeC. (2.2.6)
Moreover, we have
Aoz, z) < Ap(x, 2) — Ap(z, Hex), VzeC. (2.2.7)

Let E be a strictly convex, smooth and reflexive Banach space. Following [2, 9], we
make use of the function V, : E* x E — [0, +00), which is defined by
Vo(@,2) = ;zl|* — (T, 2) + ;ll=|P, V=€ E, 7€ E",

T q

where 1—1) + % = 1. Then V), is nonnegative and
Vo(T,x) = Ap(JE(T), x) (2.2.8)

for all z € £ and T € E*. Moreover, using the subdifferential inequality for f(z) =

%||9c||q7 x € E*, we have

1 1
(JL(z),y) < EHx + yl|? — §||:7c||‘17 Vz,y e E*. (2.2.9)
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Using (2.2.9), we have
V,(Z,2) + (y, JE(T) — ) < V,(T+7,2) (2.2.10)

for all x € I/ and Z,y € E* (see, for example, [27, 29]). In addition, V), is convex

in the first variable since Vz € F,

N N N
=1 =1 =1

where {z;,}¥, C E and {t;}}¥, € (0,1) with 3N ¢, = 1.

Let C be a convex subset of int domf,, where f,(z) = inHp, 2<p<
and let 7" be a salf-mapping of C'. A point p € C'is said to be an asymptotic fixed
point (please, see [10, 22]) of T' if C' contains a sequence {z,}>°; which converges
weakly to p and nhg)lO |z, — Tx,|| = 0. The set of asymptotic fixed points of 7" is

denoted by F(T).

Definition 2.2.3 A nonlinear mapping 7" with a nonempty asymptotic fixed point set
is said to be: (i) left Bregman strongly nonexpansive (L-BSNE) (see [16, 17])

with respect to a nonempty F (T) if
Ay(Tz,z) < Ay(z,7), Yz € C, T € F(T)
and if whenever {z,,} C C is bounded, z € F(T) and

lim (Ap(z,Z) — Ap(T'zy,, 7)) = 0,

n—o0

it follows that

lim A,(xp, Tx,) =0.

n—oo

(17) An operator T : C' — F is said to be: left Bregman firmly nonexpansive
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(L-BFNE) if

(J; (Tz) = I (Ty), Te = Ty) < (J7(Tx) = I (Ty),x —y)
for any z,y € C.

The class of left Bregman strongly nonexpansive mappings is of particular
significance in fixed point, iteration and convex optimization theories mainly because
it is closed under composition. For more information and examples of L-BSNE
and L-BFNE operators. From [16, 17], we know that every left Bregman firmly
nonexpansive mapping is left Bregman strongly nonexpansive if F/(7) = ﬁ(T)

We also need the following tools in analysis which will be used in the sequel.

Lemma 2.2.4 [15] Let {s,} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {s,,} of {s,} which satisfies

Sn; < Sn;41 for all @ € N. Define the sequence {7(n)},>n, of integers as follows:
7(n) = max{k <mn:sp < Sgi1},

where ny € N such that {k < ng : sy < sp41} # (. Then, the following hold:
() 7(ng) < 7(no+1) < ... and 7(n) — oo ;

(11) S7(n) < Sr(n)+1 and Sp < ST(n)Jrlavn > ng.

Lemma 2.2.5 [31] Let {a,} be a sequence of nonnegative real numbers satis fying

the following relation :
an+1 S (1 - an)an + an0p + Tn, N Z 17

where (i) {a,} C [0,1], > a, = oo; (i) limsup o, < 0; (i) v, > 0; (n > 1),
n=1

n—oo

(0.0
> Y < 00. Then, a, — 0 as n — oo.
n=1



CHAPTER III

Main results

3.1 Main theorem

In this section, we prove strong convergence theorem for the split feasibility problem

in Banach spaces.

Theorem 3.1.1 Let £ and F5 be two p-uniformly convex real Banach spaces which
are also uniformly smooth. Let C' and () be nonempty, closed and convex subsets
of F; and Fj, respectively. Let A : E; — FE, be a bounded linear operator and A*
: E5 — EY be the adjoint of A. Let 7" be a left Bregman strongly nonexpansive
mapping of C' into it self such that F(T) = F(T) and F(T) N Q # 0. Let {a}
be a sequence in (0,1). For a fixed u € Ej, let sequences {z,}>°, and {u,}>>, be
iteratively generated by u; € Ej,

T =TT [T, () = purorch ¥ £ (un)],

! PrlIN Flun)lP G.1.1)

Upi = HchT((szffg1 (u) + (1 =) Jp, (Txyn)), n>1,

where f(u,) = %H(I—PQ)Auan, Vf(u,) = A*ng(Aun—PQ(Aun)). If a,, — 0.

>y, =00 and {p,} C (0,00) satisfies
=1
inf p,(pg — Cyp?™) > 0.

Then the sequence {u,}>2, converges strongly to an element z* € F(T) N,

where z* = Upr)nqu.

Proof. We note that V f(u,) = A*Jp, (Au, — Py(Au,)) for all n € N. Set

P 1 Un,
Yn = Jp, (Un) — anfo ) Hpvf(un)
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for all n € N. We see that (p — 1)g = p. Then, by Lemma 2.2.1, we have

S (un)

il = 178 (o) = e )
<l = apu e, 91w + o k8 )
=, ||P — S () u 0 )
= el = o o VI )+ A 1

Set vy, = Jg[Jp, (un) — anvf Hp )V f(uy,)] for all n > 1. Then, we have z,, = [cv,

for all n > 1. Let 2™ = IIp()nqu. Then by (3.1.2), we have

Apama®) < Ayvna”) —AP(J%T[ng(un)—anVﬂun)]?x*)
. || [P 1 P (4 fp_—l( ) w4 = (J2 (u,), x*
= T 211 () = i SV () = (U (). )
D
TV )
lu p_ fP N un) u w %q S (un)
< el = oy e V) = P
—<x*,J§1(un)>—l—pnﬁ@*»vﬂun» =)
. lu Py D u ||.I‘*||p fp*l( ) * —u U
= 2l = (T )+ S o B — 0, V()
£ ()
o P P
Ay ) o
Cy, fum)
Tl o

On the other hand, we see that
(Vf(un), % = up) = (A*Jp (Au, — Po(Auy)), 2* — uy)
= <J§2(Aun — Po(Auy,)), Ax* — Au,)
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= (Jp,(Au, — Po(Auy)), Po(Au,) — Auy,)
+<J§2 (Au, — Py(Auy,)), Az — Po(Au,))

< —||Au, — Po(Au,)||P = —pf (uy). (3.1.4)

By (3.1.3) and (3.1.4), we obtain

* * * Cq p(“’n) pfp(un)
A (zy, < Ap(vn, < Ayl - o
oo 7)< Byplvw 7)< Byt )+ P0G S P flan) [P
. C, fP(un)
— A(u, —pl — ppp | 3.1.5
o(u x)—i—(q/) pp) |V f (un)||P (3.1.5)

Since infp, (pq — Cyp?~t) > 0, we have
Ap(Tn, %) < Ap(uyp, %), VYn > 1.

Now using (3.1.1), we have

Ap(Tni1, 27) < Ap(ungr, 27) < Ap(Jg; (anJp, (u) + (1= an) Jp, (Tn)), 27)
< anAp(u, ") + (1 — ) Ap(Txy,, ™)

< apAp(u, ") + (1 — ap) Ap(xp, z¥) (3.1.6)

< max{A,(u, %), Ap(wn, 2*)}

< max{A,(u,z*), Ap(x1,x*)}.
Hence {u,}5°, is bounded. Also {z,}>; is bounded.
Let by, := Jg. (anJp, (u) + (1 — ) J5, (Ty)), n = 1. Then we obtain
Ap(bn, Txy) < 0 Ap(u, Txy) + (1 — ) Ap(Tay, Txy)
= ap,Ap(u, T'z,) — 0, n — oo.

Set w, = o, Jp, (u)+(1—ay)Jp (Tx,) for all n > 1. We next consider the following
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estimation:

Ap(zpi1, ") < Ap(upsr, ™) = Ay(Ileby, %) < Ap(bp, ) — Ap(by, lcby,)
= Ap(JglanJg, (u) + (1= an) S5, (Tzy)], %) = Ap(bn, Hebn)
= VilanJp, (w) + (1 = o) Jg, (Tzn), 2%) — Ap(bn, cbn)
< V(o Jp, (u) + (1 — o) J, (Twn) — an(Jg, (u) — Jg, (7)), 27)
(TR, (0) — T8, (2), T (wn) — 57 — Aylbus Tlaby)
= VilanJg, (2%) + (1 — an) Jg, (Tzn), 27)

‘|“O[n<‘]g‘1 (u> - ‘]g‘l (I*)7 J%i‘ (wn) - l‘*> - Ap(bna HC'bn)

< (1= an)Vp(Jg, (T2n), 27)
o (Jp, (u) — Jp, (27), J}% (wn) — ") — Ay(by, Icby)

= (1= an) A (T, %) + an(Jp, (u) = J5 (&%), T (wn) — 27)
—Ap (b, Tchy,)

< (L= an)Ap(wn, o) + an(Jp, (u) = TG, (27), Jh. (wn) — z7)

— A, (b, TIcby). (3.1.7)
Let s, = Ay(x,, 2*) Vn € N. Then, by (3.1.7), we have

Sn+1 S (1 - an>5n + Oén<J§1 (U) - ng ($*>, J%f (wn) - SL’*>

— Ay (by, Teby). (3.1.8)

We next consider the following two cases:

Case 1: Suppose that there exists ng € N such that {A,(z,,2%)}52,, is non-

increasing. Then {A,(z,,z*)}>2, converges and A,(z,,z*) — Ay(Tpq1,2") —

0, n — oo. Now, from (3.1.5), we obtain

) < A (up, ) — Ap(xy, ). (3.1.9)

(pup — gy L70n)
R A TOWI T
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Also, from (3.1.6), we have
Ap(tupi1, ") < anAp(u, %) + Ay(xp, 7). (3.1.10)

Putting (3.1.10) into (3.1.9), we have

fp(un)
M
< a1 Ap(u, ) + Ap(xn_1, %)

C, . *
(Pnp — —pn) Ap(tn, %) = Ap(p, 27)

— Ay (2, 2%). (3.1.11)

By infp,(pg — Cypi~t) > 0 and (3.1.11), we have

0< (pnp ;0 )% S OénflAp(ua l'*) + Ap<33'n,1, $*> - Ap<xn7 513'*) —0

as n — oo. It follows that f(u,) — 0, n — oo, since {||Vf(u,)||} is bounded.

Hence
lim ||Au, — PQ(Aun)H = 0. (3.1.12)

From (3.1.8), we have
0 S Ap(bna HCbn)
< (Sn_3n+1)+an[<‘]g1 (u) —ng(:t*), JJqu(wn) — ") =8,] — 0, n — oo.

Hence, by Proposition 2.2.2, we obtain

by — by — 0, n — 0. (3.1.13)
It also follows that
0 < I8 (va) = 5 ()| = (2 (un) = pu e 0 () = 2 ()]
< e, : 1 197 ()P :

77 (un)

==V f(U,)|| — 0, n — oo.
g o ¥ 0 o
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Therefore, we obtain

lim {|.Jg, (vn) = Jp, (un)|| = 0.

n—oo

Since J}?Ef is norm-to-norm uniformly continuous on bounded subsets of £}, we have
lim (v, —u,| = 0.
n—oo

Furthermore, we have from (2.2.7), (3.1.5) and (3.1.6) that

IA

Ay (vn, ) = Ap(vp, Hewy,) Ap(vp, %) — Ap(xp, %)

IA

Ap(ty, %) — Ap(xp, 7)

< M+ Ap(zp1,77) — Ap(zy,2%) — 0, n — 00,

for some M* > 0. By Proposition 2.2.2, we have that ||v,, — z,|| — 0, n — 0.

Hence,
|zn — Un” < ”xn - Un“ + “Un - un” — 0, n — oo.

Observe that A, (2,11, 2%) < Ap(tnt1, %) < anAp(u, %) + (1 — ) Ay (T, x%).

It then follows that

Ap(zp, ") = Ap(Txp, ") = Ap(zn, ") — Ap(Tpgr1, ")

+Ap(xn+17 QZ*) - Ap(Txm .I*)

IN

Ap(xnv $*) - Ap(anrl? [B*)
+on (Ap(u, ) — Ap(Txy, 7))

— 0, n — o0.

Then we obtain

lim A,(xy, Tx,) =0.

n—oo
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Since {x,} is bounded, there exists {z,,} of {z,} that converges weakly to z. Now,
since x,,, — z and lim ||z, —u,|[ = 0, we obtain a subsequence {uy,} of {u,}
that u,, — 2. Since F'(T) = F(T), we have z € F(T).

Next, we show that z € (). From (2.2.2), (2.2.4) and (2.2.6), we have

Ap(zTez) < (Jp, (2) = Jg, (Le2), 2 = Tlez)
= (i (2) = T, (Tez), 2 — un,)

+<J§1 (Z) - ng (HCZ)7 HCunj - HCZ>

< <‘]§1 (Z) - ng(HcZ), 2 unj>
+<J§1 (Z) - ng (HCZ)7 unj - HC’un]>
— 0,

as j — 0o. So we have A,(z,IIcz) = 0. Thus, z € C. Let us now fix 2 € C such

that Az € Q. Then

A, = PoAun)IP = (72, (Aun, — Pof(Au,)), A, — Pof(Au,))
= (Jp,(Aun, — Po(Auy))), Au,, — Azx))

+<‘]§2 (Aun] - PQ(Aunj)7 Ax — PQ(AUTLJ>>

< (Jp, (Auy, — Po(Auy,)), Au,, — Ax))
< MA(T — Po)dug P
— 0, n — oo.
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where M > 0 is sufficiently large number. It then follows from (2.2.5) that

Az = Po(A2)||P = (Jg,(Az — Po(Az)), Az — Po(Az))
= <J§2(AZ — Po(Az)), Az — Auy,)
+(Jp, (Az — Po(Az)), Aup, — Po(Auy,))

+<J§2 (AZ — PQ(AZ), PQ(AUn].) — PQ(AZ)>

IN

(Jh,(Az — Py(Az)), Az — Auy,)

+<J§2(Az — Po(Az)), Auy, — Po(Auy,)).

Since u,;, = z, Au,; — Az and [|Au,, — Po(Au,,)|| — 0, j — oo, it follows that
4z — Po(A2)] = 0.
Hence, Az € (). This shows that z € Q and therefore z € F/(T') N ).
Moreover, we see that
Ap(zp, by) < anAp(xn,uw) + (1 — o) Ap(xn, T2y,) — 0, n— 0.
It follows that ||z, — b,|| — 0, n — co. We next show that

lim sup(Jg, (u) — Jp, (), b, — ™) < 0.

n—oo

We choose a subsequence {z,,} of {z,} such that

limsup(J3, (u) — Jp, (%), 2, — %) = lim (J, (u) — Jp (27), 2, — 27).
n—o0 J—o0

From ||z, — b,|| — 0,n — oo and (2.2.6), we obtain

limsup(Jy, (u) — Jp, (2%),b, — 2*) = limsup(Jp, (u) — J5 (%), 2, — 27)

n—oo n—oo

= (J, (w) = Jg, (27), 2 — 27)

< 0. (3.1.14)
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Note that || J3 (Tx,) — wy| = anl||J, (T2,) — Jg, (u)|| — 0, n — oc. On the other
hand, we see that
17, (bn) — wnl| = [lomJp, (u) + (1 = o) Jg, (Twn) — wal
< an || T, () =wnl|+[| T, (Tn) —wnll — 0, n — oo.

This shows that ||b, — J]‘% (wy)|| — 0, n — oco. So we obtain by (3.1.14)

limsup(Jg, (u) = J, (%), Jg. (w,) — 2%) < 0. (3.1.15)

n—oo

Now, using (3.1.8), (3.1.15) and Lemma 2.2.5, we obtain A,(z,,z*) — 0, n — oo.
Hence, z,, — z* as n — oo. Also we have ||u, — z*|| < ||u, — x| + ||2n — 2*|| —

0, n — oo. Thus u,, — x* asn — oo.

Case 2: Assume that {s,} is not monotonically decreasing sequence, and let

7:N — N be as in Lemma 2.2.4. We see that, by Lemma 2.2.4 (ii)

AP(CET(n)? z*) — AP(T$T(n)> z¥) = A;D(x'r(n)a z*) — Ap<x7(n)+1a z")

+A(Tr(ny+1, ") — Dp(Txr(ny, 27)

IA

an(Bp(u, 27) = Ay (T7(n), 7))

— 0, n — o0.

It then follows that

lim Ap(l'.,-(n), T{ET(n)) =0.

n—oo

Similar to Case 1, we can show that ||Au,,) — PoAu.(|| — 0, n — oo and

limsup(Jg, (v) = J, (%), S (wr(m)) — 27) < 0.

n—oo

Also from (3.1.8), we have that

Srm1 < (1= Qrm)$70n) + Qrn) (S, (0) = I, (27), Tigr (wrmy) — 27),
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which gives
Srn) < (Jp, (W) — Jg, (27), T (wrn)) — 7).

So by Lemma 2.2.5, we obtain

lim s:¢,,) = 0.

n—oo

We next show that lim, .. S-(n)+1 = 0. To show this, it suffices to prove
that ||2;()11 — Z7(m)|| — 0, n — oo. Indeed, by (3.1.13), we observe that
||x‘r(n) — Ur(n)+1 || < ||x7(n) - bT(n) || + ||b7'(n) - HCb‘r(n) || + ||HCbT(n) — Ur(n)+1 ||
— 0, n— o0.

This shows that

1270y 11 = el < [[2rmy11 = wrgyall + @)1 = Tyl = 0, n — oo

From (2.2.1), it follows that

Ap(2", Trmy+1) + Bp(@Trmy+1, Trm)) — Bp(2™, Trm))

= (" = Ty, T, (T () = g, (Tr(my41))-
Hence

ST(n)+1 = Ap(.f*, xT(n)+1)
< Ap(a*, Tr(m) + (2" = Tr)+1, IE, (T2 ) — T, (Z7(m)+1)) — 0.

Thus, by Lemma 2.2.4, we obtain 0 < s,, < $;(,)41, Which implies that lim s, = 0.

This shows that x,, — z* as n — oo, and hence wu, — z* as n — oo. We thus

complete the proof. O



CHAPTER 1V

Numerical Examples

In this section, we provide some numerical examples and illustrate its per-
formance by using Algorithm (3.1.1). Firstly, numerical results are shown in different

choices of the step-size p,, with different values v and ;.

Example 4.1 Let £y, = Fy = Ly([0,1]) with the inner product given by

(f,9) = /0 f(t)g(t)dt.

Let
C = {z € Lyo([0,1]) : ||z[[z, < 1}.
Then
z, |z <1
lc(z) = Po(z) =
Also, let

Q = {x € Ly((0,1) : (x,a) = b},

where a = £, b= 0. Then

Py(z) = et 4 o,

llall3

Let us assume that A : Ly([0,1]) — Lo([0,1]), (Ax)(t) = @ Then A is a bounded
linear operator and A* = A. Suppose that we take operator 7" in Theorem 3.1.1 as
T := P, the metric projection on C' (please see [16, 17]). Take a,, = n+r1, Yn > 1,

then our iterative scheme (3.1.1) becomes

T = Potn — port®d o A*(Au, — Po(Auy,))]

1V f (un)l?
un1 = Poliig+(1—37) (Pex,)], n>1, @.1)
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where f(u,) = 3||Au, — Po(Au,)||? and Vf(u,) = A*(Au, — Po(Au,)) for all
n € N.

We now study the effect (in terms of convergence, number of iterations
required and the cpu time) of the sequence {p,} C (0,00) on the iterative scheme
by choosing different p,, such that i%fpn(él — pn) > 0 in the following cases.

_ 0.5n.

Case 1: p, = e

Case 2: p, = nLH;

Case 3: p, = f—fl;
Case 4: p, = 221

The stopping criterion is defined by E, = 1||Au, — Po(Au,)||?, < 1073, or
using stopping criterion n = 1,000. We choose different choices of u and u; as
Choice 1: u =t and u; = sin(t) + t%

Choice 2: u = t? and u; = e + 2t.
The numerical experiments, using our Algorithm (3.1.1), for each case and

choice are reported in the following Table 4.1.

Table 4.1: Algorithm (3.1.1) with different cases of p,, and different choices of u
and u,

Choice 1 Choice 2

Case 1 No. of Iter. 26 20
cpu (Time) 1.247811 0.950551

Case 2 No. of Iter. 14 10
cpu (Time) 0.647647 0.467636

Case 3 No. of Iter. 7 5
cpu (Time) 0.327002 0.235971

Case 4 No. of Iter. 4 3
cpu (Time) 0.191387 0.143973
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The error plotting of F,, for each choice of u and w; is shown in Figure
1-2, respectively.

Figure 1: Different Cases with Chaice 1
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Figure 2: Different Cases with Chaice 2

0.07 T T T T T T T T T
i —f—
005k Case 1 _
Case 2
005t —%— Casze 3 4
—*— (Case 4
_ bodp B
2
“ooosf .
002F -
001k -
1] i L o
i] 2 4 5 a 10 12 14 16 18 20
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Remark 4.0.2. From our numerical experiments, it is observed that the different
choices of u and u; has no effect in terms of cpu run time for the convergence of
our algorithm. It is observed that the number of iterations and the cpu run time are

significantly decreasing starting from Case 1 to Case 4.
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Finally, we comparison of convergence of Algorithm (3.1.1) and Algorithm

(1.1.6). Let a,, = =5, for algorithm (3.1.1), we take p, = 22% and for algorithm

(1.1.6), we take t,, = 0.001. We use stopping criterion n = 1,000. For points v and

uy randomly, we obtain the following numerical results.

Table 4.2: Comparison of Algorithm (3.1.1) and Algorithm (1.1.6) in Example 4.1

Algorithm (3.1.1) Algorithm (1.1.6)

Choice 1 No. of Iter. 26 > 1,000
cpu (Time) 1.247811 -

Choice 2 No. of Iter. 20 > 1,000
cpu (Time) 0.950551 -

The error plotting n = 1,000 of Algorithm (3.1.1) and Algorithm (1.1.6)

for each choice is shown in Figure 3-4, respectively.

Figure 3: Comparison of Algorithm (3.1.1) and (1.1.6) for Choice 1 in Example 4.1
DDB T T T T T
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Figure 4: Comparison of Algorithm (3.1.1) and (1.1.6) for Choice 2 in Example 4.1
DD? T T T T T
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Remark 4.0.3. In numerical experiment, it is revealed that the sequence generated
by our proposed Algorithm (3.1.1) using the self-adaptive technique converges more

quickly than by Algorithm (1.1.6) of Shehu et al. [26] does.
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A self-adaptive method for solving the split feasibility
problem and the fixed point problem of Bregman
strongly nonexpansive mappings in Banach spaces

C. Pakalertpichian, T. Phitngam, W. Chanthabut, N. Pholasa, P. Cholamjiak *
School of Science, University of Phayao, Phayao 56000, Thailand

Abstract

In this work, we suggest a new self-adaptive method for finding a common solution of the split
feasibility problem and the fixed point problem of Bregman strongly nonexpansive mappings. We
prove its strong convergence theorem under some mild conditions. We also give some numerical

examples to show the efficiency and implementation of our method.

Keywords: split feasibility problem; strong convergence; self-adaptive method; uniformly convex; uniformly

smooth; fixed point problem; left Bregman strongly nonexpansive mappings; Banach space.

AMS Subject Classification: 49J53, 65K10, 49M37, 90C25.

1 Introduction

Let E1 and F» be two p-uniformly convex real Banach spaces which are also uniformly smooth.
Let C' and @) be nonempty, closed and convex subsets of F; and FEs, respectively; Let A : E1 — FEo
be a bounded linear operator and A* : E5 — E7 be the adjoint of A which is defined by

(A*y,x) = (y, Ax), Yo € Er,y € Ej.
The split feasibility problem (SFP) is to find a point
x € C such that Az € Q. (1.1)

We denote by Q = CNA~YQ) = {y € C : Ay € Q} the solution set of SFP. Then we have that (2

is a closed and convex subset of I7.

*Corresponding author.

Email addresses: prasitch2008@yahoo.com (P. Cholamjiak), nattawut-math@hotmail.com (N. Pholasa),
chattraporn2062@gmail.com (C. Pakalertpichian), Th13Song@gmail.com (T. Phitngam),
witthayatim60@gmail.com (W. Chanthabut).
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A self-adaptive method for solving the split feasibility problem and the fixed point problem 2

The SFP in finite-dimensional Hilbert spaces was introduced by Censor and Elfving [8] for
modelling inverse problems which arise from phase retrievals, medical image reconstruction and
recently in modelling of intensity modulated radiation therapy. The SFP attracts the attention of
many authors due to its application in signal processing. Various algorithms and some interesting

results have been invented to solve it (see, for example, [1, 3, 4, 6, 14, 18, 19, 20, 30]).

For solving SFP, in p-uniformly convex and uniformly smooth real Banach spaces, Schopfer et
al [24] proposed the following algorithm: For 21 € E; and

Tptl = HCJE1 [JE, () — th A" JE, (Axy,, — Po(Axy))], n>1, (1.2)

where IIo denotes the Bregman projection and J the duality mapping. Clearly, the above algorithm
covers the CQ-algorithm which was introduced by Byrne [7], which is defined by

Tnt+1 = PC(xn - MTLA*(I - PQ)Axn)v n =1, (13)

where p, € (0, W) and Pc, Pg are the metric projections on C' and @, respectively, which is
found to be a gradient-projection method in convex minimization as a special case. It was proved
that {x,,} defined by (1.3) converges weakly to a solution of SFP.

We observe that the operator norm ||A|| may not be calculated easily in general. To overcome
this difficulty, Lépez et al. [11] suggested the following self-adaptive method, which permits step-

size u, being selected self-adaptively in such a way:

o pnf(xn)
= I e 2 (14)

where p, € (0,4), f(zn) = 3|(I — Po)Az,|* and Vf(z,) = A*(I — Pg)Ax, for all n > 1. It was
proved that the sequence {z,,} defined by (1.4) converges weakly to a solution of SFP.

Also, employing the idea of Halpern’s iteration, Lépez et al. [11] proposed the following iteration
method:

Tnt1 = apu+ (1 — ap)Po(zn — unVi(x,)), n>1, (1.5)

where {a,,} C [0,1], u € C and the step-size p,, is chosen as above. It was proved that {x,} defined
by (1.5) converges strongly to a solution of SFP provided lim, oo, = 0 and X0° 0, = o0.
After that, there have been many modifications of the CQ algorithm and the self-adaptive method

established in the recent years (see also [32, 33]).

In solving SFP, in p-uniformly convex and uniformly smooth real Banach spaces, it was proved
that the {z,} defined by (1.2) converges weakly to a solution of SFP (1.1) provided the duality
mapping J is weak-to-weak continuous and t, € (0, (W)q%) where %} + % =1 and Cj is the
uniform smoothness coefficient of Ej. (See [20, 28]). Lately, Wang [30] modified the above algorithm
(1.2) and proved strong convergence by using the idea in the work of Nakajo and Takahashi [21] in
p-uniformly convex Banach spaces which is also uniformly smooth. The main advantage of result of
Wang [30] is that the weak-to-weak continuity of the duality mapping, assumed in [24] is dispensed

with and strong convergence result was achieved.
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The class of left Bregman firmly nonexpansive mappings associated with the Bregman distance
induced by a convex function was introduced and studied by Martin-Marques et al. [17]. If C
is a nonempty and closed subset of int(dom f), where f is a Legendre and Fréchet differentiable
function, and T': C' — int (dom f) is a left Bregman strongly nonexpansive mapping, it is proved
that F'(T) is closed (see [17]). In addition, they have shown that this class of mappings is closed
under composition and convex combination and proved weak convergence of the Picard iterative
method to a fixed point of a mapping under suitable conditions (see [16]). However, Picard iteration

process has only weak convergence.

Recently, Shehu et al.[20] introduced an algorithm for solving split feasibility problems and
fixed point problems such that the strong convergence is guaranteed by using Halpern’s iteration
process. Let u € Ej be fixed, u; € Ej arbitrarily. Let {x,} be the sequence generated by the

following manner:

Tp = HCJqT[ng (un) — tn A" Jp, (Auy — Po(Auy))],
Upp1 = Hch;(anJﬁ (u)+ (1 - an)ng (Txy)), n>1, (1.6)

1
where {a;,} C (0,1). It was proved that if a,, — 0, > | ay, = 00 and t,, € (O, (W)Qj), then
{z,} generated by (1.6) converges strongly to a solution of the SFP and fixed point of 7" which is
a left Bregman strongly nonexpansive mappings.

In this paper, motivated by the works of Ldpez et al. [14] and Shehu et al. [26], we introduce a
new self-adaptive method for solving the split feasibility problem and the fixed point problem of left
Bregman strongly nonexpansive mappings in Banach spaces. We then prove its strong convergence
of the sequence generated by our scheme in p-uniformly convex real Banach spaces which are also
uniformly smooth. The advantage of our algorithm lies in the fact that step-sizes are dynamically
chosen and not depend on the operator norm. Numerical experiments and some comparisons are
included to show the effectiveness of the our algorithm. Our results mainly improve the results of

Shehu et al. [26] and also complement many other results in the literature.

2 Preliminaries and lemmas

Let E be a real Banach space with norm || - ||, and E* denotes the Banach dual of E endowed
with the dual norm || - ||«. Let 1 < ¢ < 2 < p with ]% —i—% = 1. The modulus of convexity
0 : [0,2] — [0,1] is defined as

. r+y
s5(0) = inf (1~ I g = 1 =y o=yl 2 6.

E is called uniformly convex if dg(e) > 0 for any € € (0,2] and p-uniformly convex if there is a
Cp > 0 such that dg(e) > Cpe? for any e € (0,2]. The modulus of smoothness pg(t) : [0,00) —
[0,00) is defined by
lz+ryll+lle—7yll _

2
pe(7)

pu(r) = {! L flall = gl = 13-

E is called uniformly smooth if lim

T—0

that pg(7) < Cy7? for any 7 > 0. The L, space is 2-uniformly convex for 1 < p < 2 and p-uniformly

= 0 and g-uniformly smooth if there is a C; > 0 such
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convex for p > 2. It is known that E is p-uniformly convex if and only if its dual £* is g-uniformly
smooth (see [13]).

The duality mapping J4 is one-to-one, single-valued and satisfies J5, = (JL.)™t, where JL,
the duality mapping of E* (see [2, 11, 23]). Here the duality mapping Jb : E — 2F defined by

Tp(a) = {7 € B*: (2,7) = ||2|1”, |7 = [|=[|P~"}.
The duality mapping J%, is said to be weak-to-weak continuous if
T, =z = (Joan,y) — (Jox,y)

holds true for any y € E. It is worth noting that the ¢,(p > 1) space has such a property, but the
J(p > 2) space does not share this property.

Let f: F — R, the Bregman distance with respect to f is defined as:

Ap(z,y) = f(y) — f(x) = (f'(z),y —x), v,y €E

It is worth noting that the duality mapping J, is in fact the derivative of the function f,(z) = %Hpr .
Then the Bregman distance with respect to f, is given by

1 1
Ap(x,y) = —|=ll” = (Jpz,y) + —llyl”

q p
1
E(Hy\lp = lzl) + (T, 2 — y)

1
= g(Hfﬁllp = lyll") = {(Jpz — Ty, @).
We know the following inequality which was proved by Xu [31].

Lemma 2.1. [71] Let z,y € E. If E is g-uniformly smooth, then there exists Cyq > 0 such that

l =yl < ll=l|? = q(y, JE () + Callyll*-

Let x,y,z € E, one can easily get

Ap(a;a y) + AP(?J? Z) - Ap(xv Z) = <.CL' - y7 ng - J§y>7 (21)
Ap(z,y) + Aply, z) = (x —y, Jpx — Jpy) (2.2)
and
z|P P
Bty = BBy o, (2.3)

1 1 _
Wherei—i—afl.

For the p-uniformly convex space, the metric and Bregman distance has the following relation

(see [24]):
Tllz —ylIP < Ap(x,y) < (z -y, Jpz — JLy), (2.4)

where 7 > 0 is some fixed number.
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Proposition 2.2. [5, 12] Let E be a smooth and uniformly conver Banach space. Let {x,} and

{yn} be two sequences in E such that Ay(xy,yn) — 0. If {yn} is bounded, then ||z, — yn| — 0.
Let C be a nonempty, closed and convex subset of E. The metric projection
Pox = argmingec|lz —yl|, z € E,
is the unique minimizer of the norm distance, which can be characterized by a variational inequality:
(Jo(x — Pex),z — Pox) <0, VzeC. (2.5)
Likewise, one can define the Bregman projection:
oz = argmingecAp(z,y), z € E,

as the unique minimizer of the Bregman distance (see [25]). The Bregman projection can also be

characterized by a variational inequality:

(Jh(z) — Jn(Hex), z —Ilex) <0, VzeC. (2.6)

Moreover, we have
Ap(llez, z) < Ap(z, 2) — Ap(x,llcx), VzeC. (2.7)
Let E be a strictly convex, smooth and reflexive Banach space. Following [2, 9], we make use of

the function V,, : E* x E — [0, +00), which is defined by
V(@) = Lz — (7,2) + LalP, Vo€ B, T B,

where % + % = 1. Then V), is nonnegative and

Vy(@,2) = Ay(J3 (7). ) 23)
for all z € E and T € E*. Moreover, using the subdifferential inequality for f(z) = %HxHq, x e E*,
we have
q 1 a_ Ly 1a *
(Jp(@),y) < allx +yll! - gllwll , Va,y € E". (2.9)
Using (2.9), we have
forallz € E and 7,y € E* (see, for example, [27, 29]). In addition, V,, is convex in the first variable
since Vz € E,
N N N
A, (J%* (Z tijg(;ci)> ,z) =V, (Z tijg(;ci),z> <Y il (i, 2), (2.11)
i=1 i=1 i=1

where {z;}, C E and {t;}}, C (0,1) with Zfil t; = 1.

Let C be a convex subset of int domf,, where f,(z) = %||a:||p, 2 < p < oo and let T be a

salf-mapping of C. A point p € C is said to be an asymptotic fixed point (please, see [10, 22]) of
T if C contains a sequence {x,}5°; which converges weakly to p and lim ||z, — Tx,|| = 0. The
n—oo

set of asymptotic fixed points of T' is denoted by ﬁ(T)
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Definition 2.3. A nonlinear mapping T with a nonempty asymptotic fixed point set is said to
be: (i) left Bregman strongly nonexpansive (L-BSNE) (see [106, 17]) with respect to a nonempty
F(T) if

Ay(Tx,z) < Ay(z,T), Vo € C, 7 € F(T)
and if whenever {z,} C C is bounded, Z € F(T) and

lim (AP(QTn, Lf’) - Ap<Txn7 j)) - 0’

n—oo

it follows that
lim Ap(zp,Tzy,) = 0.

n—oo

(i) An operator T : C' — E is said to be: left Bregman firmly nonexpansive (L-BFNE) if

(JP(Tx) — IV (Ty), Tx — Ty) < (JF(Tz)— JF(Ty),z—y)

for any x,y € C.

The class of left Bregman strongly nonexpansive mappings is of particular significance in fixed
point, iteration and convex optimization theories mainly because it is closed under composition.
For more information and examples of L-BSNE and L-BFNE operators. From [16, 17], we know
that every left Bregman firmly nonexpansive mapping is left Bregman strongly nonexpansive if
F(T) = F(T).

We also need the following tools in analysis which will be used in the sequel.

Lemma 2.4. [15] Let {s,} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {sn,} of {sn} which satisfies sp, < sp,+1 for all i € N. Define

the sequence {T(n)}n>n, of integers as follows:
T(n) = max{k <n:sp < Sp+1},

where ng € N such that {k < ng : s < sky1} # 0. Then, the following hold:
(i) T(ng) < 7(ng+1) < ... and 7(n) — oo;
(ZZ) S7(n) < Sr(n)+1 and sp < 87(n)+17vn > ny.

Lemma 2.5. [7]] Let {a,} be a sequence of nonnegative real numbers satisfying the following

relation :
ant1 < (1= an)an + anopn + v, n 2 1,
o0 [ee]
where (i) {on} C [0,1], ay, = 00; (i) limsup o, < 05 (492) v, > 0; (n > 1), > vn < 00. Then,
n=1 n—00 n=1

an — 0 as n — oo.

We shall adopt the following notations in this paper:
e 1, — x means that x, — x strongly;
e 1, — x means that x, — x weakly;

o wy(wy) = {r: 3w, — z} is the weak w-limit set of the sequence {x,}52;.
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3 Main results

In this section, we prove strong convergence theorem for the split feasibility problem in Banach

spaces.

Theorem 3.1. Let E1 and Es be two p-uniformly convex real Banach spaces which are also uni-
formly smooth. Let C and QQ be nonempty, closed and convexr subsets of E1 and Es, respectively.
Let A : By — E3 be a bounded linear operator and A* : E5 — ET be the adjoint of A. LetT be a
left Bregman strongly nonexpansive mapping of C into it self such that F(T) = F\(T) and F(T) N
Q # 0. Let {an} be a sequence in (0,1). For a fived u € Ey, let sequences {x,}5° ;1 and {un}2 4
be iteratively generated by u; € Fy,

In = HCJqf[ng (un) — pnﬁvf(un)]

(3.1)
Upyl = Hchf(oszgl( u) + (1 —an)Jp (Tan)), n>1,

where f(u,) = %H(I — PQ)Au,|P, Vf(un) = A*Jp, (Auy — Po(Aug)). If an — 0. Y an =00

and {pn} C (0,00) satisfies
inf pn(pg — Coplh ™) > 0.
Then the sequence {u,}52, converges strongly to an element z* € F(T) N, where z* =

I rrnau.

Proof. We note that V f(u,) = A*Jp, (Au, — Po(Auy,)) for all n € N. Set

Un =I5 (un) = pn B f ()
for all n € N. We see that (p — 1)g = p. Then, by Lemma 2.1, we have

7~ (un)

lynll? = ||J§1(un) WW(%)II
P — L) G g SO ) O
< H an qanvf( )Hp< n;vf( n)>+cqpn||vf( )Hquvf( n)H
T e (7 P )

Set v, = %T [ng (un) — anVf(un)] for all n > 1. Then, we have z,, = IIgv, for all n > 1.
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Let 2* = I p(rynqu. Then by (3.2), we have

7~ (un)

Ap(xn,a®) < Ap(vn, @) = Ap(Jh: [T, (un) = p I Fla )Hpvf(un)} ")
*||p
I g ) - pnM,v F)lF = (T2, (), ")
fpil(un) *
i L 0, )
fP 7 (un) Cq ¢ fP(un)
- n P_ M~ r/. \lln n)v n (717,7
< gl = e R e ¥ e+ A R T
. fP M un) ll==| *||p
—(a*, Jp, (un)) +an<w fun)) +
_ 1 . [ 1P 1(un)
- 5||un]|l’—(gc s I, (un)) + +p I Flu )||p< — Un, V f(un))
Cq g fP(un)
T PV )P
— * fpil(UN) * % fP(un)
= Al ) oG e Ve g e O
On the other hand, we see that
(Vf(un), 2" —un) = (A"Jp, (Au, — Po(Aun)), 2 — up)
= (Jp,(Au, — Po(Auy)), Ax™ — Auy,)
= < JE (Aun PQ(AUn))aPQ(Aun) — Aup)
<J§2 (Aup, — Po(Auy)), Az™ — Po(Auy,))
< =l Aup — Po(Aun)|P = —pf(un). (3.4)
By (3.3) and (3.4), we obtain
o Gy Pl pf(u)
_ oy (Ca g >
= Ap(unvx )+ < q ,0% Pnp ||vf(un)||p (3'5)
Since i%fpn(pq — Cypt™) > 0, we have
Ap(zp, ) < Ap(up,z*), Vn>1.
Now using (3.1), we have
Ap(@ns1,0") € Apltins1,a®) < Ap(Th (anTh, (w) + (1 = an) T, (Ta)), ")
< anAp(u, ™) + (1 — an) Ap(Txp, )
< o Ap(u, ) + (1 — o) Ap(zp, %) (3.6)

< max{A,(u,z*), Ap(zp, %)}
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< ma‘X{AP(uv 32‘*), Ap(.Tl, $*)}
Hence {uy}2% is bounded. Also {z,}22, is bounded.
Let b, := Jqf(a,,,Jf,;1 (u) + (1 — an)Jg, (Txy)), n>1. Then we obtain
Ap(by, Tay) < anAp(u, Tay) + (1 — an)Ap(Tzp, Ty,)

= apAp(u, Txy) — 0, n — oo.

Set wyn = anJp, (u) + (1 — ay)Jp, (Tay) for all n > 1. We next consider the following estimation:

Ap(@ni1,2%) < Ap(upt1,2%) = Ap(Ileby, ™) < Ap(bp, ) — Ap(by, Ilcby)
= Ap(Jg:lanJg, (u) + (1 = an) Ji, (Tan)], 27) — Ap(bn, Hoby)
= Vp(anJp, (u) + (1 = o) Jp, (Twn), 2") — Ap(by, Tcby)
< VplanJp, () + (1 — o) Jg, (Tan) — o (Jg, (u) — Jg, (27)),27)
+tan(Jg, (u) = T, (&%), Jge (wn) = 27) = Ap(bn, Hcbn)
= VplanJp, (z%) + (1 — an)Jp, (Txn), x7)
+tan(Jg, (u) = T, (&%), Jge (wn) — 27) = Ap(bn, Hcbn)
(1 = an)Vy(Jg, (Tan), z7)
+an(Jp, (u) = Jg, (&%), T (wn) — 2%) = Ap(bn, Teby)
= (1= an)Ap(Tan,z") + an(Jp, (u) — Jp, (z7), J%T (wy) — x™)
—Ap(bn, IIcbn)
(1 = an)Ap(zn, %) + an(Jp, (u) — Jp, (27), J}]ET (wp) — x*)
—Ap(by, IIoby,). (3.7)

IN

IN

Let s, = Ap(zp,2*) Vn € N. Then, by (3.7), we have

Snt1 < (1 —ap)sn + an(ng (u) — ng (z"), Jqf(wn) — ") — Ap(by, Icby). (3.8)

We next consider the following two cases:
Case 1: Suppose that there exists ng € N such that {A,(z,,2*)};2,,, is non-increasing. Then

{Ap(zp, %) }02, converges and A, (xy,, 2*) — Ap(2p41,2*) — 0, n — oo. Now, from (3.5), we obtain

(oup — C108) ) A a%) = Ay(am,a). (3.9)
¢ " Pl < Sl p(n,

Also, from (3.6), we have
Ap(unt1, %) < anAp(u, x*) + Ap(zp, 2¥). (3.10)

Putting (3.10) into (3.9), we have

C q fp(un)

(onp — fﬂn)m < Ap(un,x*) - Ap(xn,x*)

IN

An—10p(u, %) + Ap(n—1,2%) — Ap(ap, ¥). (3.11)

By infp,(pg — Cypd™") > 0 and (3.11), we have
n

9
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0 < (pnp — q)”fo((s"))”p < ap—18,(u, %) + Ap(xn—1,2%) — Ap(xp, 2*) — 0, n — oo.
It follows that f(u,) — 0, n — oo, since {||V f(u,)||} is bounded. Hence
lim ||Au, — Po(Auy,)| = 0. (3.12)
n—oo
From (3.8), we have
0 < Ap(bn, Teby) < (sn — snt1) + an[(Jp, (v) — Jp, (2%), J E* (wp) — %) — 5] — 0, n — occ.

Hence, by Proposition 2.2, we obtain

lby, — by || — 0, n — co. (3.13)
It also follows that
0 < I, (vn) = Jg, ()|l = [1Jp, (un) — i C )Vf( n) — Jg, (wn) |
b (en) = 21 1) = ) g
i (un)
= niv »)l| — 0, n — oc.
Ion eV F )] = 0, m = o0

Therefore, we obtain
: P _ P _
Jim [|Tg, (vn) — S, (un)[| = 0.
Since J},. is norm-to-norm uniformly continuous on bounded subsets of Ef, we have
1
lim ||vy, — uy| = 0.
n—oo

Furthermore, we have from (2.7), (3.5) and (3.6) that

Ap(vny xn) = Ap(vna Hcvn)

IN

Ap(0,7) = Ay, o)
Ap(tp, %) — Ap(xp, %)

< an—lM* + Ap($n_1,$*) - Ap(xnvm*) - 07 n — oo,

IN

for some M* > 0. By Proposition 2.2, we have that ||v, — z,| — 0, n — oc.

Hence,
|2n — unll < |27 — vp|| + [ln — unl| — 0, n — oo.

Observe that A, (2p41,2%) < Ap(unt1,2%) < anAp(u, ) + (1 — o) Ap(Txp, ).
It then follows that

Ap(xn,x™) — Ap(Tan,2*) = Ap(@n, ") — Ap(@nt1, %) + Ap(@nt1,27) — Ap(Txy, )
< Ap(xn,z) — Ap(znt1, 27) + an(Ap(u, ) — Ap(Txp, ™))

— 0, n — oo.

Then we obtain
lim Ap(zp,Tzy,) = 0.

n—oo
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Since {x,} is bounded, there exists {w,,} of {z,} that converges weakly to z. Now, since z,; — 2
and lim ||z, —uy| = 0, we obtain a subsequence {uy,} of {u,} that u,, — z. Since F(T') = F(T),
we have z € F/(T).

Next, we show that z € Q. From (2.2), (2.4) and (2.6), we have

Ap(z,Icz) < <J§1(z - ng(ch),z—ch>

)
- <J§71 (Z) - ng (HCZ)7Z - unj> + <J§1 (Z) - ng (HCZ)vunj - HCunj>
(2) = Jp, (oz), Mouy,; —Tez)

)

A
o
™
|
=
=
Q
&
\‘N
|
IS
_|_
=
O
|
o
=
S
N
IS
3
|
=
Q
IS

as j — 0o. So we have A,(z,IIcz) = 0. Thus, z € C. Let us now fix € C such that Az € Q.
Then

|Atn, — Po(Aun)IP = (5, (Aun, — Po(Aun,)), Auin, — Po(Aun,))
= (Jp,(Aun; — Po(Auy,))), Auy,; — Az))
—I—(J]I_sz (Aup; — Po(Aup,), Ax — Po(Auy,))

< <J§2 (Aunj — PQ(Aunj)), Aup; — Azx))
< M|A*(I — Po)Aun, [P~
— 0, n — oo.

where M > 0 is sufficiently large number. It then follows from (2.5) that

[Az = Po(A2)|[P = (A2 = Po(A2)), Az — Po(Az))
(Az — Po(Az)), Az — Auy;) + (Jp, (Az — Po(Az)), Aun, — Po(Auy,))
+(Jp, (Az — Po(Az), Po(Aun,) — Po(Az))

< (I, (Az = Po(Az)), Az — Auy,) + (Jp, (Az — Po(Az)), Aup; — Po(Aun,)).

(JE,
= <J§2
Since up; — 2z, Aup; — Az and ||Au,, — Po(Aup;)|| — 0, j — oo, it follows that

|Az — Po(Az)|| = 0.
Hence, Az € Q). This shows that z € Q and therefore z € FI(T') N Q.
Moreover, we see that
Ap(xn, by) < anAp(xpn,u) + (1 — an)Ap(zp, Txy) — 0, n— 0.
It follows that ||z, — by|| — 0, n — oco. We next show that

limsup(Jp, (u) — Jp (27),bp — ") <0,

n—oo

We choose a subsequence {z,,} of {z,} such that

limsup(Jp, (u) — Jp (%), 2, — ") = 1111010<ng (u) = Jpg, (x%), xn; — 2%).

n—oo 1=



6
A self-adaptive method for solving the split feasibility problem and the fixed point problem 12

From ||z, — by|| — 0,7 — oo and (2.6), we obtain

limsup(Jp, (u) — Jp (¢%),bp —2) = limsup(Jp (u) — Jp (z*),z, —z7)
= (Jp,(u) = Jp (z7),z —2") < 0. (3.14)

Note that ||J5 (Txn) — wa| = anllJp, (T2s) — Jg, (u)]| — 0, n — oco. On the other hand, we see
that

|’J§1(bn) — wy| HOéanél (u) + (1 — an)ng (Tzn) — wal

anll I, (w) = wal| + | J5, (T2n) — wn| — 0, n — oo.

IN

This shows that ||b, — Jqf(wn)H — 0, n — 00. So we obtain by (3.14)
limsup(J3, (u) — Jg, (27), J%f (wy) —x*) <0. (3.15)
n—oo

Now, using (3.8), (3.15) and Lemma 2.5, we obtain Ap(zy,z*) — 0, n — co. Hence, z,, — z* as

n — o00. Also we have ||u, — 2*|| < ||up — n|| + [|J2n, — 2*|| — 0, n — oo. Thus u,, — x* as n — oc.

Case 2: Assume that {s,} is not monotonically decreasing sequence, and let 7 : N — N be as
in Lemma 2.4. We see that, by Lemma 2.4 (i7)

Ap(xr(n)v $*) - AP(TxT(n), .’L'*) = Ap(xr(n)a l‘*) - Ap(xT(n)Jrl, .’L‘*) + Ap(xT(n)+17 $*)
7AP(T$T(7L)7 {L'*)
an(AP(uv x*) - AP(TZ'T(H)) x*))

IN

— 0, n — oo.

It then follows that
lim Ap(xT(n),TI'T(n)) = 0.

n—oo

Similar to Case 1, we can show that ||Au,(,) — PQAu, (| — 0, n — oo and

limsup(Jp, (u) — Jp (=7), J‘%T (Wr(n)) — ") < 0.

n—o0o

Also from (3.8), we have that
Sr+1 < (1= arm))Sr(n) + r () (Jg, (w) = J5, (27), T (wrmy) — 2),
which gives
Sr(n) < (T, () = Jp, (&%), T (wr(n)) — %)

So by Lemma 2.5, we obtain

nh_)Hgo Srmn) = 0.

We next show that lim;,—cc s-()41 = 0. To show this, it suffices to prove that

||$T(n)+1 - xT(n)H — 0, n — o0.
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Indeed, by (3.13), we observe that
1Z7(n) = Urmys1 | < %7y = bry | + 1br(m) — Lebry | + [ebr(n) — Ur(ny11ll— 0, n — oo
This shows that
[27(n)+1 = Zrm)ll < 1Tr@)+1 = trmy1ll + [tr@y+1 — 7wyl = 0, 0 — oo
From (2.1), it follows that
Ap(r*, T r(my41) + Ap(Triny+15 Trm)) — Bp(*, 27(m)) = (2 — T2y 41, I, (Tr ) — T, (Tr(n)41))-
Hence

Sr(n)+1 = Ap(x*7 x’r(n)—i—l) < Ap(w*wr'r(n)) + <.I‘* = Lr(n)+1s ng (m'r(n)> - ng (l"r(n)—i-l» — 0.

Thus, by Lemma 2.4, we obtain 0 < s, < $;(,)41, which implies that lim s,, = 0. This shows that

n—oo
T, — =¥ as n — oo, and hence u, — x* as n — oo. We thus complete the proof. O

4 Numerical Experiments
In this section, we provide some numerical examples and illustrate its performance by using

Algorithm (3.1). Firstly, numerical results are shown in different choices of the step-size p, with

different values u and uq.
Example 4.1 Let E; = Ey = Ly([0, 1]) with the inner product given by

1
(f.9) = /0 f(t)g(t)dt.

Let
C:={z € La([0,1]) : |||, <1}
Then
z, =z <1
Ho(r) = Po(x) =
e el > 1
Also, let

Q = {z € Ly([0,1)) : (z,a) = b},

where a = %, b =0. Then

_b—{a,x)

Po(x) = a+x.

lall

Let us assume that A : Lo([0,1]) — L2([0,1]), (Ax)(t) = # Then A is a bounded linear operator
and A* = A. Suppose that we take operator T' in Theorem 3.1 as T := P, the metric projection

13
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on C (please see [16, 17]). Take o, = Vn > 1, then our iterative scheme (3.1) becomes

1
n+1’

2 = Polun — pu-2C) 4%, — Po(Auy))]

V7 )l
i1 = Pol— 4 (L= ——)(Poan)), n2 1, (4.1)

where f(un) = 3|l Au, — Po(Auy)||? and V f(uy) = A*(Au, — Pg(Auy)) for all n € N.

We now study the effect (in terms of convergence, number of iterations required and the cpu
time) of the sequence {p,} C (0,00) on the iterative scheme by choosing different p,, such that
infp, (4 — pn) > 0 in the following cases.

n

Case 1: p, = %;
Case 2: p, = 145
Case 3: p, = %;
Case 4: p, = %

The stopping criterion is defined by E, = | Au, — Po(Auy)||7, < 1073, or using stopping
criterion n = 1,000. We choose different choices of u and u; as
Choice 1: u =t and u; = sin(t) + t2;
Choice 2: v = t? and u; = et + 2t.

The numerical experiments, using our Algorithm (3.1), for each case and choice are reported in
the following Table 1.

Table 1: Algorithm (3.1) with different cases of p,, and different choices of u and u;

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 26 14 7 4
cpu (Time) 1.247811 0.647647 0.327002 0.191387

Choice 2 No. of Iter. 20 10 5 3
cpu (Time) 0.950551 0.467636 0.235971 0.143973

The error plotting of E,, for each choice of u and w; is shown in Figure 1-2, respectively.
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Figure 1: Different Cases with Choice 1
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Figure 2. Different Cases with Chaoice 2
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Remark 4.1. From our numerical experiments, it is observed that the different choices of u and
u1 has no effect in terms of cpu run time for the convergence of our algorithm. It is observed that
the number of iterations and the cpu run time are significantly decreasing starting from Case 1 to

Case 4.

Finally, we comparison of convergence of Algorithm (3.1) and Algorithm (1.6). Let o, =

__ 0.5n
T n+l

criterion n = 1, 000. For points v and u; randomly, we obtain the following numerical results.

1
n+1’

for algorithm (3.1), we take p, and for algorithm (1.6), we take ¢, = 0.001. We use stopping

15
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Table 2: Comparison of Algorithm (3.1) and Algorithm (1.6) in Example 4.1

Algorithm (3.1)  Algorithm (1.6)

Choice 1 u=t No. of Iter. 26 > 1,000
uy = sin(t) + > cpu (Time) 1.247811 -

Choice 2 u=t2 No. of Iter. 20 > 1,000
up =e'+2t  cpu (Time) 0.950551 -

The error plotting n = 1,000 of Algorithm (3.1) and Algorithm (1.6) for each choice is shown

in Figure 3-4, respectively.

Figure 3: Comparison of Algorithm (3.1) and (1.6) for Choice 1 in Example 4.1
T T
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Figure 4: Comparison of Algorithm (3.1) and (1.6) for Choice 2 in Example 4.1
0.07 T T . T T |

Algorithm (1.6)
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Remark 4.2. In numerical experiment, it is revealed that the sequence generated by our proposed

Algorithm (3.1) using the self-adaptive technique converges more quickly than by Algorithm (1.6)
of Shehu et al. [20] does.
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