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CHAPTER I

Introduction

Let E1 and E2 be two p -uniformly convex real Banach spaces which are also

uniformly smooth. Let C and Q be nonempty, closed and convex subsets of E1 and

E2, respectively; Let A : E1 → E2 be a bounded linear operator and A∗ : E∗
2 → E∗

1

be the adjoint of A which is defined by

〈A∗ȳ, x〉 := 〈ȳ, Ax〉, ∀x ∈ E1, ȳ ∈ E∗
2 .

The split feasibility problem (SFP) is to find a point

x ∈ C such that Ax ∈ Q. (1.1.1)

We denote by Ω = C ∩ A−1(Q) = {y ∈ C : Ay ∈ Q} the solution set of SFP. Then

we have that Ω is a closed and convex subset of E1.

The SFP in finite-dimensional Hilbert spaces was introduced by Censor and

Elfving [8] for modelling inverse problems which arise from phase retrievals, medical

image reconstruction and recently in modelling of intensity modulated radiation ther-

apy. The SFP attracts the attention of many authors due to its application in signal

processing. Various algorithms and some interesting results have been invented to

solve it (see, for example, [1, 3, 4, 6, 14, 18, 19, 20, 30]).

For solving SFP, in p -uniformly convex and uniformly smooth real Banach

spaces, Schöpfer et al [24] proposed the following algorithm: For x1 ∈ E1 and

xn+1 = ΠCJ∗E1
[JE1(xn)− tnA

∗JE2(Axn − PQ(Axn))], n ≥ 1, (1.1.2)

where ΠC denotes the Bregman projection and J the duality mapping. Clearly, the

above algorithm covers the CQ-algorithm which was introduced by Byrne [7], which
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is defined by

xn+1 = PC(xn − µnA
∗(I − PQ)Axn), n ≥ 1, (1.1.3)

where µn ∈ (0, 2
‖A‖2 ) and PC , PQ are the metric projections on C and Q, respectively,

which is found to be a gradient-projection method in convex minimization as a special

case. It was proved that {xn} defined by (1.1.3) converges weakly to a solution of

SFP.

We observe that the operator norm ‖A‖ may not be calculated easily in

general. To overcome this difficulty, López et al. [14] suggested the following self-

adaptive method, which permits step-size µn being selected self-adaptively in such a

way:

µn =
ρnf(xn)

‖∇f(xn)‖2
, n ≥ 1, (1.1.4)

where ρn ∈ (0, 4), f(xn) = 1
2
‖(I −PQ)Axn‖2 and ∇f(xn) = A∗(I −PQ)Axn for all

n ≥ 1. It was proved that the sequence {xn} defined by (1.1.4) converges weakly to

a solution of SFP.

Also, employing the idea of Halpern’s iteration, López et al. [14] proposed

the following iteration method:

xn+1 = αnu + (1− αn)PC(xn − µn∇f(xn)), n ≥ 1, (1.1.5)

where {αn} ⊂ [0, 1], u ∈ C and the step-size µn is chosen as above. It was

proved that {xn} defined by (1.1.5) converges strongly to a solution of SFP provided

limn→∞ αn = 0 and Σ∞
n=1αn = ∞. After that, there have been many modifications of

the CQ algorithm and the self-adaptive method established in the recent years (see

also [32, 33]).

In solving SFP, in p -uniformly convex and uniformly smooth real Banach
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spaces, it was proved that the {xn} defined by (1.1.2) converges weakly to a solution

of SFP (1.1.1) provided the duality mapping J is weak-to-weak continuous and

tn ∈
(
0, ( q

Cq‖A‖q )
1

q−1

)
where 1

p
+ 1

q
= 1 and Cq is the uniform smoothness coefficient

of E1. (See [26, 28]). Lately, Wang [30] modified the above algorithm (1.1.2) and

proved strong convergence by using the idea in the work of Nakajo and Takahashi

[21] in p-uniformly convex Banach spaces which is also uniformly smooth. The

main advantage of result of Wang [30] is that the weak-to-weak continuity of the

duality mapping, assumed in [24] is dispensed with and strong convergence result

was achieved.

The class of left Bregman firmly nonexpansive mappings associated with

the Bregman distance induced by a convex function was introduced and studied by

Martin-Marques et al. [17]. If C is a nonempty and closed subset of int(dom f ),

where f is a Legendre and Fréchet differentiable function, and T : C → int (dom f)

is a left Bregman strongly nonexpansive mapping, it is proved that F (T ) is closed

(see [17]). In addition, they have shown that this class of mappings is closed under

composition and convex combination and proved weak convergence of the Picard

iterative method to a fixed point of a mapping under suitable conditions (see [16]).

However, Picard iteration process has only weak convergence.

Recently, Shehu et al.[26] introduced an algorithm for solving split feasibility

problems and fixed point problems such that the strong convergence is guaranteed by

using Halpern’s iteration process. Let u ∈ E1 be fixed, u1 ∈ E1 arbitrarily. Let {xn}

be the sequence generated by the following manner:

xn = ΠCJq
E∗

1
[Jp

E1
(un)− tnA

∗Jp
E2

(Aun − PQ(Aun))],

un+1 = ΠCJq
E∗

1
(αnJ

p
E1

(u) + (1− αn)Jp
E1

(Txn)), n ≥ 1, (1.1.6)

where {αn} ⊂ (0, 1). It was proved that if αn → 0,
∑∞

n=1 αn = ∞ and tn ∈(
0, ( q

Cq‖A‖q )
1

q−1

)
, then {xn} generated by (1.1.6) converges strongly to a solution
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of the SFP and fixed point of T which is a left Bregman strongly nonexpansive

mappings.

In this paper, motivated by the works of López et al. [14] and Shehu et al.

[26], we introduce a new self-adaptive method for solving the split feasibility prob-

lem and the fixed point problem of left Bregman strongly nonexpansive mappings

in Banach spaces. We then prove its strong convergence of the sequence generated

by our scheme in p -uniformly convex real Banach spaces which are also uniformly

smooth. The advantage of our algorithm lies in the fact that step-sizes are dynami-

cally chosen and not depend on the operator norm. Numerical experiments and some

comparisons are included to show the effectiveness of the our algorithm. Our results

mainly improve the results of Shehu et al. [26] and also complement many other

results in the literature.



CHAPTER II

Preliminaries and lemmas

2.1 Preliminaries

In this section, we give some preliminaries which will be used in the sequel.

Definition 2.1.1 [35](Fixed point)

Let X be a nonempty set and T : X → X . We say that x ∈ X is a fixed

point of T if

T (x) = x

and denote by Fix(T ) the set of all fixed points of T .

Example 2.1.2 1. If X = R and T (x) = x2 + 5x + 4, then Fix(T ) = {−2};

2. If X = R and T (x) = x2 − x, then Fix(T ) = {0, 2};

3. If X = R and T (x) = x + 5, then Fix(T ) = ∅;

4. If X = R and T (x) = x, then Fix(T ) = R.

Definition 2.1.3 [37](Normed space)

Let X be a norm linear space over field K (R or C) and ‖ · ‖ : X → R+ be

a function. Then ‖ · ‖ is said to be a norm if the following properties hold:

1. ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = 0;

2. ‖αx‖ = |α|‖x‖ for all x ∈ X and α ∈ K;

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X (triangle inequality).

The ordered pair (X, ‖ · ‖) is called a normed space.
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Example 2.1.4 Let X = Rn is a normed space with the following norms :

‖x‖1 =
n∑

i=1

|xi| for all x = (x1, x2, .., xn) ∈ Rn;

‖x‖p =
( n∑

i=1

|xi|p
)1/p

for all x = (x1, x2, .., xn) ∈ Rn and p ∈ (1,∞);

‖x‖∞ = max
1≤i≤n

|xi| for all x = (x1, x2, .., xn) ∈ Rn.

Definition 2.1.5 [37](Convergent sequence)

A sequence {xn} in a normed space X is said to be convergent to x if

lim
n→∞

‖xn − x‖ = 0. In this case, we write xn → x or lim
n→∞

xn = x.

Definition 2.1.6 [37](Cauchy sequence) A sequence {xn} in a normed space X is

said to be Cauchy if lim
m,n→∞

‖xm − xn‖ = 0, i.e., for ε > 0, there exists an integer

n0 ∈ N such that ‖xm − xn‖ < ε for all m, n ≥ n0.

Definition 2.1.7 [37](Completeness)

The space X is said to be complete if every Cauchy sequence in X con-

verges (that is, has a limit which is an element of X.)

Expressed in terms of completeness, the Cauchy convergence criterion im-

plies the following.

Definition 2.1.8 [36](Banach space)

A normed space which is complete with respect to the metric induced by

the norm is called a Banach space.

Example 2.1.9 The simplest example of a Banach space is RN or CN with

the Euclidean norm.

Definition 2.1.10 [37](Strong convergence)

A sequence {xn} in a normed space X is said to be Strongly convergent (or

convergent in the norm) if there is an x ∈ X such that lim
n→∞

‖xn − x‖ = 0.
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Definition 2.1.11 [37](Inner product space)

An inner product space is a vector space X with an inner product defined

on X . Here, an inner product on X is a mapping of X ×X into the scalar field K

of X; that is, with every pair of vectors x and y there is associated a scalar which is

written by 〈x, y〉 and called the inner product of x and y, such that for all vectors

x, y, z and scalars α we have

(IP1) 〈x, x〉 ≥ 0;

(IP2) 〈x, x〉 = 0 ⇔ x = 0;

(IP3) 〈αx, y〉 = α〈x, y〉;

(IP4) 〈x, y〉 = 〈y, x〉;

(IP5) 〈x + y, z〉 = 〈x, z〉+ 〈z, y〉.

Proposition 2.1.12 [37](The Cauchy-Schwarz inequality)

Let X be an inner product space. Then the following holds:

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 for all x, y ∈ X, (2.1.1)

i.e.,

|〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ X. (2.1.2)

Definition 2.1.13 [36](Hilbert space)

An inner product space which is complete with respect to the induced norm

is called a Hilbert space.

Definition 2.1.14 [37](Closed set)

Let (X, d) be a metric space. A subset U ⊆ X is called open if for every

x ∈ X there exists r > 0 such that B(x, r) ⊆ U . A set U is called closed if its

complement X \ U is open.
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Definition 2.1.15 [37](Convex set)

Let C be a subset of a linear space X . Then C is said to be convex if

(1− λ)x + λy ∈ C for all x, y ∈ C and all scalar λ ∈ [0, 1].

Definition 2.1.16 [34](Convex function)

Let X be a linear space and f : X → (−∞,∞] be a function. Then f is

said to be convex if f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ X and

λ ∈ [0, 1].

Definition 2.1.17 [37](Bounded sequence)

A sequence {xn} in X is bounded if there exists M > 0 such that ‖xn‖ ≤ M

for all n ∈ N.

Definition 2.1.18 [34](Bounded linear operator)

Let X and Y be normed spaces and T : X → Y be a linear operator. The

operator T is said to be bounded if there is a real number c > 0 such that for all

x ∈ X ,

‖Tx‖ ≤ c‖x‖.

2.2 Lemmas

Let E be a real Banach space with norm ‖ · ‖, and E∗ denotes the Banach dual of E

endowed with the dual norm ‖ · ‖∗. Let 1 < q ≤ 2 ≤ p with 1
p
+ 1

q
= 1. The modulus

of convexity δE : [0, 2] → [0, 1] is defined as

δE(ε) = inf{1− ‖x + y‖
2

: ‖x‖ = 1 = ‖y‖, ‖x− y‖ ≥ ε}.

E is called uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2] and p-uniformly

convex if there is a Cp > 0 such that δE(ε) ≥ Cpε
p for any ε ∈ (0, 2]. The

modulus of smoothness ρE(τ) : [0,∞) → [0,∞) is defined by
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ρE(τ) = {‖x + τy‖+ ‖x− τy‖
2

− 1 : ‖x‖ = ‖y‖ = 1}.

E is called uniformly smooth if lim
τ→0

ρE(τ)
τ

= 0 and q-uniformly smooth if there is a

Cq > 0 such that ρE(τ) ≤ Cqτ
q for any τ > 0. The Lp space is 2-uniformly convex

for 1 < p ≤ 2 and p-uniformly convex for p ≥ 2. It is known that E is p-uniformly

convex if and only if its dual E∗ is q-uniformly smooth (see [13]).

The duality mapping Jp
E is one-to-one, single-valued and satisfies Jp

E =

(Jq
E∗)−1, where Jq

E∗ the duality mapping of E∗ (see [2, 11, 23]). Here the duality

mapping Jp
E : E → 2E∗ defined by

Jp
E(x) = {x ∈ E∗ : 〈x, x〉 = ‖x‖p, ‖x‖ = ‖x‖p−1}.

The duality mapping Jp
E is said to be weak-to-weak continuous if

xn ⇀ x ⇒ 〈Jp
Exn, y〉 → 〈Jp

Ex, y〉

holds true for any y ∈ E. It is worth noting that the `p(p > 1) space has such a

property, but the Jp
E(p > 2) space does not share this property.

Let f : E → R, the Bregman distance with respect to f is defined as:

∆f (x, y) = f(y)− f(x)− 〈f ′(x), y − x〉, x, y ∈ E

It is worth noting that the duality mapping Jp is in fact the derivative of the function

fp(x) = 1
p
‖x‖p. Then the Bregman distance with respect to fp is given by

∆p(x, y) =
1

q
‖x‖p − 〈Jp

Ex, y〉+
1

p
‖y‖p

=
1

p
(‖y‖p − ‖x‖p) + 〈Jp

Ex, x− y〉

=
1

q
(‖x‖p − ‖y‖p)− 〈Jp

Ex− Jp
Ey, x〉.

We know the following inequality which was proved by Xu [31].
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Lemma 2.2.1 [31] Let x, y ∈ E. If E is q-uniformly smooth, then there exists

Cq > 0 such that

‖x− y‖q ≤ ‖x‖q − q〈y, Jq
E(x)〉+ Cq‖y‖q.

Let x, y, z ∈ E, one can easily get

∆p(x, y) + ∆p(y, z)−∆p(x, z) = 〈x− y, Jp
Ez − Jp

Ey〉, (2.2.1)

∆p(x, y) + ∆p(y, x) = 〈x− y, Jp
Ex− Jp

Ey〉 (2.2.2)

and

∆p(x, y) =
‖x‖p

p
+
‖y‖p

q
− 〈x, Jp

E(y)〉, (2.2.3)

where 1
p

+ 1
q

= 1.

For the p-uniformly convex space, the metric and Bregman distance has the

following relation (see [24]):

τ‖x− y‖p ≤ ∆p(x, y) ≤ 〈x− y, Jp
Ex− Jp

Ey〉, (2.2.4)

where τ > 0 is some fixed number.

Proposition 2.2.2 [5, 12] Let E be a smooth and uniformly convex Banach space.

Let {xn} and {yn} be two sequences in E such that ∆p(xn, yn) → 0. If {yn} is

bounded, then ‖xn − yn‖ → 0.

Let C be a nonempty, closed and convex subset of E. The metric projection

PCx = argminy∈C‖x− y‖, x ∈ E,
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is the unique minimizer of the norm distance, which can be characterized by a

variational inequality:

〈Jp
E(x− PCx), z − PCx〉 ≤ 0, ∀z ∈ C. (2.2.5)

Likewise, one can define the Bregman projection:

ΠCx = argminy∈C∆p(x, y), x ∈ E,

as the unique minimizer of the Bregman distance (see [25]). The Bregman projection

can also be characterized by a variational inequality:

〈Jp
E(x)− Jp

E(ΠCx), z − ΠCx〉 ≤ 0, ∀z ∈ C. (2.2.6)

Moreover, we have

∆p(ΠCx, z) ≤ ∆p(x, z)−∆p(x, ΠCx), ∀z ∈ C. (2.2.7)

Let E be a strictly convex, smooth and reflexive Banach space. Following [2, 9], we

make use of the function Vp : E∗ × E → [0, +∞), which is defined by

Vp(x, x) = 1
q
‖x‖q − 〈x, x〉+ 1

p
‖x‖p, ∀x ∈ E, x ∈ E∗,

where 1
p

+ 1
q

= 1. Then Vp is nonnegative and

Vp(x, x) = ∆p(J
q
E∗(x), x) (2.2.8)

for all x ∈ E and x ∈ E∗. Moreover, using the subdifferential inequality for f(x) =

1
q
‖x‖q, x ∈ E∗, we have

〈Jq
E(x), y〉 ≤ 1

q
‖x + y‖q − 1

q
‖x‖q, ∀x, y ∈ E∗. (2.2.9)
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Using (2.2.9), we have

Vp(x, x) + 〈y, Jq
E∗(x)− x〉 ≤ Vp(x + y, x) (2.2.10)

for all x ∈ E and x̄, ȳ ∈ E∗ (see, for example, [27, 29]). In addition, Vp is convex

in the first variable since ∀z ∈ E,

∆p

(
Jq

E∗

(
N∑

i=1

tiJ
p
E(xi)

)
, z

)
= Vp

(
N∑

i=1

tiJ
p
E(xi), z

)
≤

N∑
i=1

ti∆p(xi, z), (2.2.11)

where {xi}N
i=1 ⊂ E and {ti}N

i=1 ⊂ (0, 1) with
∑N

i=1 ti = 1.

Let C be a convex subset of int domfp, where fp(x) = 1
p
‖x‖p, 2 ≤ p < ∞

and let T be a salf-mapping of C. A point p ∈ C is said to be an asymptotic fixed

point (please, see [10, 22]) of T if C contains a sequence {xn}∞n=1 which converges

weakly to p and lim
n→∞

‖xn − Txn‖ = 0. The set of asymptotic fixed points of T is

denoted by F̂ (T ).

Definition 2.2.3 A nonlinear mapping T with a nonempty asymptotic fixed point set

is said to be: (i) left Bregman strongly nonexpansive (L-BSNE) (see [16, 17])

with respect to a nonempty F̂ (T ) if

∆p(Tx, x̄) ≤ ∆p(x, x̄), ∀x ∈ C, x̄ ∈ F̂ (T )

and if whenever {xn} ⊂ C is bounded, x̄ ∈ F̂ (T ) and

lim
n→∞

(∆p(xn, x̄)−∆p(Txn, x̄)) = 0,

it follows that

lim
n→∞

∆p(xn, Txn) = 0.

(ii) An operator T : C → E is said to be: left Bregman firmly nonexpansive
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(L-BFNE) if

〈JE
p (Tx)− JE

p (Ty), Tx− Ty〉 ≤ 〈JE
p (Tx)− JE

p (Ty), x− y〉

for any x, y ∈ C.

The class of left Bregman strongly nonexpansive mappings is of particular

significance in fixed point, iteration and convex optimization theories mainly because

it is closed under composition. For more information and examples of L-BSNE

and L-BFNE operators. From [16, 17], we know that every left Bregman firmly

nonexpansive mapping is left Bregman strongly nonexpansive if F (T ) = F̂ (T ).

We also need the following tools in analysis which will be used in the sequel.

Lemma 2.2.4 [15] Let {sn} be a sequence of real numbers that does not decrease

at infinity in the sense that there exists a subsequence {sni
} of {sn} which satisfies

sni
< sni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : sk < sk+1},

where n0 ∈ N such that {k ≤ n0 : sk < sk+1} 6= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ ... and τ(n) →∞ ;

(ii) sτ(n) ≤ sτ(n)+1 and sn ≤ sτ(n)+1,∀n ≥ n0.

Lemma 2.2.5 [31] Let {an} be a sequence of nonnegative real numbers satisfying

the following relation :

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 1,

where (i) {αn} ⊂ [0, 1],
∞∑

n=1

αn = ∞; (ii) lim sup
n→∞

σn ≤ 0; (iii) γn ≥ 0; (n ≥ 1),

∞∑
n=1

γn < ∞. Then, an → 0 as n →∞.



CHAPTER III

Main results

3.1 Main theorem

In this section, we prove strong convergence theorem for the split feasibility problem

in Banach spaces.

Theorem 3.1.1 Let E1 and E2 be two p-uniformly convex real Banach spaces which

are also uniformly smooth. Let C and Q be nonempty, closed and convex subsets

of E1 and E2, respectively. Let A : E1 → E2 be a bounded linear operator and A∗

: E∗
2 → E∗

1 be the adjoint of A. Let T be a left Bregman strongly nonexpansive

mapping of C into it self such that F (T ) = F̂ (T ) and F (T ) ∩ Ω 6= ∅. Let {αn}

be a sequence in (0,1). For a fixed u ∈ E1, let sequences {xn}∞n=1 and {un}∞n=1 be

iteratively generated by u1 ∈ E1,
xn = ΠCJq

E∗
1
[Jp

E1
(un)− ρn

fp−1(un)
||∇f(un)||p∇f(un)],

un+1 = ΠCJq
E∗

1
(αnJ

p
E1

(u) + (1− αn)Jp
E1

(Txn)), n ≥ 1,

(3.1.1)

where f(un) = 1
p
‖(I−PQ)Aun‖p, ∇f(un) = A∗Jp

E2
(Aun−PQ(Aun)). If αn → 0.

∞∑
n=1

αn = ∞ and {ρn} ⊂ (0,∞) satisfies

inf
n

ρn(pq − Cqρ
q−1
n ) > 0.

Then the sequence {un}∞n=1 converges strongly to an element x∗ ∈ F (T ) ∩ Ω,

where x∗ = ΠF (T )∩Ωu.

Proof. We note that ∇f(un) = A∗Jp
E2

(Aun − PQ(Aun)) for all n ∈ N. Set

yn = Jp
E1

(un)− ρn
fp−1(un)
||∇f(un)||p∇f(un)
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for all n ∈ N. We see that (p− 1)q = p. Then, by Lemma 2.2.1, we have

‖yn||q = ‖Jp
E1

(un)− ρn
fp−1(un)

||∇f(un)||p
∇f(un)||q

≤ ||un||p − qρn
fp−1(un)

||∇f(un)||p
〈un,∇f(un)〉+ Cqρ

q
n

f (p−1)q(un)

||∇f(un)||pq
||∇f(un)||q

= ‖un||p − qρn
fp−1(un)

||∇f(un)||p
〈un,∇f(un)〉+ Cqρ

q
n

fp(un)

||∇f(un)||p
. (3.1.2)

Set vn = Jq
E∗

1
[Jp

E1
(un)−ρn

fp−1(un)
||∇f(un)||p∇f(un)] for all n ≥ 1. Then, we have xn = ΠCvn

for all n ≥ 1. Let x∗ = ΠF (T )∩Ωu. Then by (3.1.2), we have

∆p(xn, x
∗) ≤ ∆p(vn, x

∗) = ∆p(J
q
E∗

1
[Jp

E1
(un)− ρn

fp−1(un)

||∇f(un)||p
∇f(un)], x∗)

=
||x∗||p

p
+

1

q
||Jp

E1
(un)− ρn

fp−1(un)

||∇f(un)||p
∇f(un)||q − 〈Jp

E1
(un), x∗〉

+ρn
fp−1(un)

||∇f(un)||p
〈x∗,∇f(un)〉

≤ 1

q
||un||p − ρn

fp−1(un)

||∇f(un)||p
〈un,∇f(un)〉+

Cq

q
ρq

n

fp(un)

||∇f(un)||p

−〈x∗, Jp
E1

(un)〉+ ρn
fp−1(un)

||∇f(un)||p
〈x∗,∇f(un)〉+

‖x∗‖
p

p

=
1

q
||un||p − 〈x∗, Jp

E1
(un)〉+

‖x∗‖
p

p

+ ρn
fp−1(un)

||∇f(un)||p
〈x∗ − un,∇f(un)〉

+
Cq

q
ρq

n

fp(un)

||∇f(un)||p

= ∆p(un, x
∗) + ρn

fp−1(un)

||∇f(un)||p
〈x∗ − un,∇f(un)〉

+
Cq

q
ρq

n

fp(un)

||∇f(un)||p
. (3.1.3)

On the other hand, we see that

〈∇f(un), x∗ − un〉 = 〈A∗Jp
E2

(Aun − PQ(Aun)), x∗ − un〉

= 〈Jp
E2

(Aun − PQ(Aun)), Ax∗ − Aun〉
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= 〈Jp
E2

(Aun − PQ(Aun)), PQ(Aun)− Aun〉

+〈Jp
E2

(Aun − PQ(Aun)), Ax∗ − PQ(Aun)〉

≤ −‖Aun − PQ(Aun)‖p = −pf(un). (3.1.4)

By (3.1.3) and (3.1.4), we obtain

∆p(xn, x
∗) ≤ ∆p(vn, x

∗) ≤ ∆p(un, x
∗) +

Cq

q
ρq

n

fp(un)

‖∇f(un)‖p
− ρn

pfp(un)

‖∇f(un)‖p

= ∆p(un, x
∗) +

(
Cq

q
ρq

n − ρnp

)
fp(un)

‖∇f(un)‖p
. (3.1.5)

Since inf
n

ρn(pq − Cqρ
q−1
n ) > 0, we have

∆p(xn, x
∗) ≤ ∆p(un, x

∗), ∀n ≥ 1.

Now using (3.1.1), we have

∆p(xn+1, x
∗) ≤ ∆p(un+1, x

∗) ≤ ∆p(J
q
E∗

1
(αnJ

p
E1

(u) + (1− αn)Jp
E1

(Txn)), x∗)

≤ αn∆p(u, x∗) + (1− αn)∆p(Txn, x
∗)

≤ αn∆p(u, x∗) + (1− αn)∆p(xn, x
∗) (3.1.6)

≤ max{∆p(u, x∗), ∆p(xn, x
∗)}

...

≤ max{∆p(u, x∗), ∆p(x1, x
∗)}.

Hence {un}∞n=1 is bounded. Also {xn}∞n=1 is bounded.

Let bn := Jq
E∗

1
(αnJ

p
E1

(u) + (1− αn)Jp
E1

(Txn)), n ≥ 1. Then we obtain

∆p(bn, Txn) ≤ αn∆p(u, Txn) + (1− αn)∆p(Txn, Txn)

= αn∆p(u, Txn) → 0, n →∞.

Set wn = αnJ
p
E1

(u)+(1−αn)Jp
E1

(Txn) for all n ≥ 1. We next consider the following
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estimation:

∆p(xn+1, x
∗) ≤ ∆p(un+1, x

∗) = ∆p(ΠCbn, x
∗) ≤ ∆p(bn, x

∗)−∆p(bn, ΠCbn)

= ∆p(J
q
E∗

1
[αnJ

p
E1

(u) + (1− αn)Jp
E1

(Txn)], x∗)−∆p(bn, ΠCbn)

= Vp(αnJ
p
E1

(u) + (1− αn)Jp
E1

(Txn), x∗)−∆p(bn, ΠCbn)

≤ Vp(αnJ
p
E1

(u) + (1− αn)Jp
E1

(Txn)− αn(Jp
E1

(u)− Jp
E1

(x∗)), x∗)

+αn〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wn)− x∗〉 −∆p(bn, ΠCbn)

= Vp(αnJ
p
E1

(x∗) + (1− αn)Jp
E1

(Txn), x∗)

+αn〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wn)− x∗〉 −∆p(bn, ΠCbn)

≤ (1− αn)Vp(J
p
E1

(Txn), x∗)

+αn〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wn)− x∗〉 −∆p(bn, ΠCbn)

= (1− αn)∆p(Txn, x
∗) + αn〈Jp

E1
(u)− Jp

E1
(x∗), Jq

E∗
1
(wn)− x∗〉

−∆p(bn, ΠCbn)

≤ (1− αn)∆p(xn, x
∗) + αn〈Jp

E1
(u)− Jp

E1
(x∗), Jq

E∗
1
(wn)− x∗〉

−∆p(bn, ΠCbn). (3.1.7)

Let sn = ∆p(xn, x
∗) ∀n ∈ N. Then, by (3.1.7), we have

sn+1 ≤ (1− αn)sn + αn〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wn)− x∗〉

−∆p(bn, ΠCbn). (3.1.8)

We next consider the following two cases:

Case 1: Suppose that there exists n0 ∈ N such that {∆p(xn, x
∗)}∞n=n0

is non-

increasing. Then {∆p(xn, x
∗)}∞n=1 converges and ∆p(xn, x

∗) − ∆p(xn+1, x
∗) →

0, n →∞. Now, from (3.1.5), we obtain

(ρnp−
Cq

q
ρq

n)
fp(un)

‖∇f(un)‖p
≤ ∆p(un, x

∗)−∆p(xn, x
∗). (3.1.9)
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Also, from (3.1.6), we have

∆p(un+1, x
∗) ≤ αn∆p(u, x∗) + ∆p(xn, x

∗). (3.1.10)

Putting (3.1.10) into (3.1.9), we have

(ρnp−
Cq

q
ρq

n)
fp(un)

‖∇f(un)‖p
≤ ∆p(un, x

∗)−∆p(xn, x
∗)

≤ αn−1∆p(u, x∗) + ∆p(xn−1, x
∗)

−∆p(xn, x
∗). (3.1.11)

By inf
n

ρn(pq − Cqρ
q−1
n ) > 0 and (3.1.11), we have

0 < (ρnp− Cq

q
ρq

n) fp(un)
‖∇f(un)‖p ≤ αn−1∆p(u, x∗) + ∆p(xn−1, x

∗)−∆p(xn, x
∗) → 0

as n → ∞. It follows that f(un) → 0, n → ∞, since {‖∇f(un)‖} is bounded.

Hence

lim
n→∞

‖Aun − PQ(Aun)‖ = 0. (3.1.12)

From (3.1.8), we have

0 ≤ ∆p(bn, ΠCbn)

≤ (sn−sn+1)+αn[〈Jp
E1

(u)−Jp
E1

(x∗), Jq
E∗

1
(wn)−x∗〉−sn] → 0, n →∞.

Hence, by Proposition 2.2.2, we obtain

‖bn − ΠCbn‖ → 0, n →∞. (3.1.13)

It also follows that

0 ≤ ‖Jp
E1

(vn)− Jp
E1

(un)‖ = ‖Jp
E1

(un)− ρn
fp−1(un)

‖∇f(un)‖p
∇f(un)− Jp

E1
(un)‖

= ‖ρn
fp−1(un)

‖∇f(un)‖p
∇f(un)‖ → 0, n →∞.
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Therefore, we obtain

lim
n→∞

‖Jp
E1

(vn)− Jp
E1

(un)‖ = 0.

Since Jq
E∗

1
is norm-to-norm uniformly continuous on bounded subsets of E∗

1 , we have

lim
n→∞

‖vn − un‖ = 0.

Furthermore, we have from (2.2.7), (3.1.5) and (3.1.6) that

∆p(vn, xn) = ∆p(vn, ΠCvn) ≤ ∆p(vn, x
∗)−∆p(xn, x

∗)

≤ ∆p(un, x
∗)−∆p(xn, x

∗)

≤ αn−1M
∗ + ∆p(xn−1, x

∗)−∆p(xn, x
∗) → 0, n →∞,

for some M∗ > 0. By Proposition 2.2.2, we have that ‖vn − xn‖ → 0, n →∞.

Hence,

‖xn − un‖ ≤ ‖xn − vn‖+ ‖vn − un‖ → 0, n →∞.

Observe that ∆p(xn+1, x
∗) ≤ ∆p(un+1, x

∗) ≤ αn∆p(u, x∗) + (1− αn)∆p(Txn, x
∗).

It then follows that

∆p(xn, x
∗)−∆p(Txn, x

∗) = ∆p(xn, x
∗)−∆p(xn+1, x

∗)

+∆p(xn+1, x
∗)−∆p(Txn, x

∗)

≤ ∆p(xn, x
∗)−∆p(xn+1, x

∗)

+αn(∆p(u, x∗)−∆p(Txn, x
∗))

→ 0, n →∞.

Then we obtain

lim
n→∞

∆p(xn, Txn) = 0.
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Since {xn} is bounded, there exists {xnj
} of {xn} that converges weakly to z. Now,

since xnj
⇀ z and lim

n→∞
‖xn − un‖ = 0, we obtain a subsequence {unj

} of {un}

that unj
⇀ z. Since F (T ) = F̂ (T ), we have z ∈ F (T ).

Next, we show that z ∈ Ω. From (2.2.2), (2.2.4) and (2.2.6), we have

∆p(z, ΠCz) ≤ 〈Jp
E1

(z)− Jp
E1

(ΠCz), z − ΠCz〉

= 〈Jp
E1

(z)− Jp
E1

(ΠCz), z − unj
〉

+〈Jp
E1

(z)− Jp
E1

(ΠCz), unj
− ΠCunj

〉

+〈Jp
E1

(z)− Jp
E1

(ΠCz), ΠCunj
− ΠCz〉

≤ 〈Jp
E1

(z)− Jp
E1

(ΠCz), z − unj
〉

+〈Jp
E1

(z)− Jp
E1

(ΠCz), unj
− ΠCunj

〉

→ 0,

as j → ∞. So we have ∆p(z, ΠCz) = 0. Thus, z ∈ C. Let us now fix x ∈ C such

that Ax ∈ Q. Then

‖Aunj
− PQ(Aunj

)‖p = 〈Jp
E2

(Aunj
− PQ(Aunj

)), Aunj
− PQ(Aunj

)〉

= 〈Jp
E2

(Aunj
− PQ(Aunj

)), Aunj
− Ax)〉

+〈Jp
E2

(Aunj
− PQ(Aunj

), Ax− PQ(Aunj
)〉

≤ 〈Jp
E2

(Aunj
− PQ(Aunj

)), Aunj
− Ax)〉

≤ M‖A∗(I − PQ)Aunj
‖p−1

→ 0, n →∞.
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where M > 0 is sufficiently large number. It then follows from (2.2.5) that

‖Az − PQ(Az)‖p = 〈Jp
E2

(Az − PQ(Az)), Az − PQ(Az)〉

= 〈Jp
E2

(Az − PQ(Az)), Az − Aunj
〉

+〈Jp
E2

(Az − PQ(Az)), Aunj
− PQ(Aunj

)〉

+〈Jp
E2

(Az − PQ(Az), PQ(Aunj
)− PQ(Az)〉

≤ 〈Jp
E2

(Az − PQ(Az)), Az − Aunj
〉

+〈Jp
E2

(Az − PQ(Az)), Aunj
− PQ(Aunj

)〉.

Since unj
⇀ z, Aunj

⇀ Az and ‖Aunj
− PQ(Aunj

)‖ → 0, j →∞, it follows that

‖Az − PQ(Az)‖ = 0.

Hence, Az ∈ Q. This shows that z ∈ Ω and therefore z ∈ F (T ) ∩ Ω.

Moreover, we see that

∆p(xn, bn) ≤ αn∆p(xn, u) + (1− αn)∆p(xn, Txn) → 0, n →∞.

It follows that ‖xn − bn‖ → 0, n →∞. We next show that

lim sup
n→∞

〈Jp
E1

(u)− Jp
E1

(x∗), bn − x∗〉 ≤ 0.

We choose a subsequence {xnj
} of {xn} such that

lim sup
n→∞

〈Jp
E1

(u)− Jp
E1

(x∗), xn − x∗〉 = lim
j→∞

〈Jp
E1

(u)− Jp
E1

(x∗), xnj
− x∗〉.

From ‖xn − bn‖ → 0, n →∞ and (2.2.6), we obtain

lim sup
n→∞

〈Jp
E1

(u)− Jp
E1

(x∗), bn − x∗〉 = lim sup
n→∞

〈Jp
E1

(u)− Jp
E1

(x∗), xn − x∗〉

= 〈Jp
E1

(u)− Jp
E1

(x∗), z − x∗〉

≤ 0. (3.1.14)
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Note that ‖Jp
E1

(Txn)− wn‖ = αn‖Jp
E1

(Txn)− Jp
E1

(u)‖ → 0, n →∞. On the other

hand, we see that

‖Jp
E1

(bn)− wn‖ = ‖αnJ
p
E1

(u) + (1− αn)Jp
E1

(Txn)− wn‖

≤ αn‖Jp
E1

(u)−wn‖+‖Jp
E1

(Txn)−wn‖ → 0, n →∞.

This shows that ‖bn − Jq
E∗

1
(wn)‖ → 0, n →∞. So we obtain by (3.1.14)

lim sup
n→∞

〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wn)− x∗〉 ≤ 0. (3.1.15)

Now, using (3.1.8), (3.1.15) and Lemma 2.2.5, we obtain ∆p(xn, x
∗) → 0, n → ∞.

Hence, xn → x∗ as n →∞. Also we have ‖un − x∗‖ ≤ ‖un − xn‖+ ‖xn − x∗‖ →

0, n →∞. Thus un → x∗ as n →∞.

Case 2: Assume that {sn} is not monotonically decreasing sequence, and let

τ : N → N be as in Lemma 2.2.4. We see that, by Lemma 2.2.4 (ii)

∆p(xτ(n), x
∗)−∆p(Txτ(n), x

∗) = ∆p(xτ(n), x
∗)−∆p(xτ(n)+1, x

∗)

+∆p(xτ(n)+1, x
∗)−∆p(Txτ(n), x

∗)

≤ αn(∆p(u, x∗)−∆p(Txτ(n), x
∗))

→ 0, n →∞.

It then follows that

lim
n→∞

∆p(xτ(n), Txτ(n)) = 0.

Similar to Case 1, we can show that ‖Auτ(n) − PQAuτ(n)‖ → 0, n →∞ and

lim sup
n→∞

〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wτ(n))− x∗〉 ≤ 0.

Also from (3.1.8), we have that

sτ(n)+1 ≤ (1− ατ(n))sτ(n) + ατ(n)〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wτ(n))− x∗〉,
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which gives

sτ(n) ≤ 〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wτ(n))− x∗〉.

So by Lemma 2.2.5, we obtain

lim
n→∞

sτ(n) = 0.

We next show that limn→∞ sτ(n)+1 = 0. To show this, it suffices to prove

that ‖xτ(n)+1 − xτ(n)‖ → 0, n →∞. Indeed, by (3.1.13), we observe that

‖xτ(n)−uτ(n)+1‖ 6 ‖xτ(n)− bτ(n)‖+‖bτ(n)−ΠCbτ(n)‖+‖ΠCbτ(n)−uτ(n)+1‖

→ 0, n →∞.

This shows that

‖xτ(n)+1 − xτ(n)‖ ≤ ‖xτ(n)+1 − uτ(n)+1‖+ ‖uτ(n)+1 − xτ(n)‖ → 0, n →∞.

From (2.2.1), it follows that

∆p(x
∗, xτ(n)+1) + ∆p(xτ(n)+1, xτ(n))−∆p(x

∗, xτ(n))

= 〈x∗ − xτ(n)+1, J
p
E1

(xτ(n))− Jp
E1

(xτ(n)+1)〉.

Hence

sτ(n)+1 = ∆p(x
∗, xτ(n)+1)

≤ ∆p(x
∗, xτ(n)) + 〈x∗ − xτ(n)+1, J

p
E1

(xτ(n))− Jp
E1

(xτ(n)+1)〉 → 0.

Thus, by Lemma 2.2.4, we obtain 0 ≤ sn ≤ sτ(n)+1, which implies that lim
n→∞

sn = 0.

This shows that xn → x∗ as n → ∞, and hence un → x∗ as n → ∞. We thus

complete the proof.



CHAPTER IV

Numerical Examples

In this section, we provide some numerical examples and illustrate its per-

formance by using Algorithm (3.1.1). Firstly, numerical results are shown in different

choices of the step-size ρn with different values u and u1.

Example 4.1 Let E1 = E2 = L2([0, 1]) with the inner product given by

〈f, g〉 =

∫ 1

0

f(t)g(t)dt.

Let

C := {x ∈ L2([0, 1]) : ‖x‖L2 ≤ 1}.

Then

ΠC(x) = PC(x) =

 x, ‖x‖ ≤ 1

x
‖x‖ , ‖x‖ > 1.

Also, let

Q := {x ∈ L2([0, 1]) : 〈x, a〉 = b},

where a = t
2
, b = 0. Then

PQ(x) = b−〈a,x〉
‖a‖22

a + x.

Let us assume that A : L2([0, 1]) → L2([0, 1]), (Ax)(t) = x(t)
2

. Then A is a bounded

linear operator and A∗ = A. Suppose that we take operator T in Theorem 3.1.1 as

T := PC , the metric projection on C (please see [16, 17]). Take αn = 1
n+1

, ∀n ≥ 1,

then our iterative scheme (3.1.1) becomes

xn = PC [un − ρn
f(un)

‖∇f(un)‖2 A
∗(Aun − PQ(Aun))]

un+1 = PC [ u
n+1

+(1− 1
n+1

)(PCxn)], n ≥ 1, (4.1)
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where f(un) = 1
2
‖Aun − PQ(Aun)‖2 and ∇f(un) = A∗(Aun − PQ(Aun)) for all

n ∈ N.

We now study the effect (in terms of convergence, number of iterations

required and the cpu time) of the sequence {ρn} ⊂ (0,∞) on the iterative scheme

by choosing different ρn such that inf
n

ρn(4− ρn) > 0 in the following cases.

Case 1: ρn = 0.5n
n+1

;

Case 2: ρn = n
n+1

;

Case 3: ρn = 2n
n+1

;

Case 4: ρn = 3.5n
n+1

.

The stopping criterion is defined by En = 1
2
‖Aun−PQ(Aun)‖2

L2
< 10−3, or

using stopping criterion n = 1, 000. We choose different choices of u and u1 as

Choice 1: u = t and u1 = sin(t) + t2;

Choice 2: u = t2 and u1 = et + 2t.

The numerical experiments, using our Algorithm (3.1.1), for each case and

choice are reported in the following Table 4.1.

Table 4.1: Algorithm (3.1.1) with different cases of ρn and different choices of u
and u1

Choice 1 Choice 2

Case 1 No. of Iter. 26 20
cpu (Time) 1.247811 0.950551

Case 2 No. of Iter. 14 10
cpu (Time) 0.647647 0.467636

Case 3 No. of Iter. 7 5
cpu (Time) 0.327002 0.235971

Case 4 No. of Iter. 4 3
cpu (Time) 0.191387 0.143973
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The error plotting of En for each choice of u and u1 is shown in Figure

1-2, respectively.

Remark 4.0.2. From our numerical experiments, it is observed that the different

choices of u and u1 has no effect in terms of cpu run time for the convergence of

our algorithm. It is observed that the number of iterations and the cpu run time are

significantly decreasing starting from Case 1 to Case 4.
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Finally, we comparison of convergence of Algorithm (3.1.1) and Algorithm

(1.1.6). Let αn = 1
n+1

, for algorithm (3.1.1), we take ρn = 0.5n
n+1

and for algorithm

(1.1.6), we take tn = 0.001. We use stopping criterion n = 1, 000. For points u and

u1 randomly, we obtain the following numerical results.

Table 4.2: Comparison of Algorithm (3.1.1) and Algorithm (1.1.6) in Example 4.1

Algorithm (3.1.1) Algorithm (1.1.6)

Choice 1 No. of Iter. 26 > 1,000
cpu (Time) 1.247811 -

Choice 2 No. of Iter. 20 > 1,000
cpu (Time) 0.950551 -

The error plotting n = 1, 000 of Algorithm (3.1.1) and Algorithm (1.1.6)

for each choice is shown in Figure 3-4, respectively.
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Remark 4.0.3. In numerical experiment, it is revealed that the sequence generated

by our proposed Algorithm (3.1.1) using the self-adaptive technique converges more

quickly than by Algorithm (1.1.6) of Shehu et al. [26] does.
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A self-adaptive method for solving the split feasibility

problem and the fixed point problem of Bregman

strongly nonexpansive mappings in Banach spaces
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School of Science, University of Phayao, Phayao 56000, Thailand

Abstract

In this work, we suggest a new self-adaptive method for finding a common solution of the split
feasibility problem and the fixed point problem of Bregman strongly nonexpansive mappings. We
prove its strong convergence theorem under some mild conditions. We also give some numerical
examples to show the efficiency and implementation of our method.

Keywords: split feasibility problem; strong convergence; self-adaptive method; uniformly convex; uniformly

smooth; fixed point problem; left Bregman strongly nonexpansive mappings; Banach space.

AMS Subject Classification: 49J53, 65K10, 49M37, 90C25.

1 Introduction

Let E1 and E2 be two p -uniformly convex real Banach spaces which are also uniformly smooth.
Let C and Q be nonempty, closed and convex subsets of E1 and E2, respectively; Let A : E1 → E2

be a bounded linear operator and A∗ : E∗
2 → E∗

1 be the adjoint of A which is defined by

〈A∗ȳ, x〉 := 〈ȳ, Ax〉, ∀x ∈ E1, ȳ ∈ E∗
2 .

The split feasibility problem (SFP) is to find a point

x ∈ C such that Ax ∈ Q. (1.1)

We denote by Ω = C ∩A−1(Q) = {y ∈ C : Ay ∈ Q} the solution set of SFP. Then we have that Ω
is a closed and convex subset of E1.

∗Corresponding author.

Email addresses: prasitch2008@yahoo.com (P. Cholamjiak), nattawut-math@hotmail.com (N. Pholasa),

chattraporn2062@gmail.com (C. Pakalertpichian), Th13Song@gmail.com (T. Phitngam),

witthayatim60@gmail.com (W. Chanthabut).
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A self-adaptive method for solving the split feasibility problem and the fixed point problem 2

The SFP in finite-dimensional Hilbert spaces was introduced by Censor and Elfving [8] for
modelling inverse problems which arise from phase retrievals, medical image reconstruction and
recently in modelling of intensity modulated radiation therapy. The SFP attracts the attention of
many authors due to its application in signal processing. Various algorithms and some interesting
results have been invented to solve it (see, for example, [1, 3, 4, 6, 14, 18, 19, 20, 30]).

For solving SFP, in p -uniformly convex and uniformly smooth real Banach spaces, Schöpfer et
al [24] proposed the following algorithm: For x1 ∈ E1 and

xn+1 = ΠCJ∗E1
[JE1(xn)− tnA∗JE2(Axn − PQ(Axn))], n ≥ 1, (1.2)

where ΠC denotes the Bregman projection and J the duality mapping. Clearly, the above algorithm
covers the CQ-algorithm which was introduced by Byrne [7], which is defined by

xn+1 = PC(xn − µnA∗(I − PQ)Axn), n ≥ 1, (1.3)

where µn ∈ (0, 2
‖A‖2 ) and PC , PQ are the metric projections on C and Q, respectively, which is

found to be a gradient-projection method in convex minimization as a special case. It was proved
that {xn} defined by (1.3) converges weakly to a solution of SFP.

We observe that the operator norm ‖A‖ may not be calculated easily in general. To overcome
this difficulty, López et al. [14] suggested the following self-adaptive method, which permits step-
size µn being selected self-adaptively in such a way:

µn =
ρnf(xn)
‖∇f(xn)‖2

, n ≥ 1, (1.4)

where ρn ∈ (0, 4), f(xn) = 1
2‖(I − PQ)Axn‖2 and ∇f(xn) = A∗(I − PQ)Axn for all n ≥ 1. It was

proved that the sequence {xn} defined by (1.4) converges weakly to a solution of SFP.

Also, employing the idea of Halpern’s iteration, López et al. [14] proposed the following iteration
method:

xn+1 = αnu + (1− αn)PC(xn − µn∇f(xn)), n ≥ 1, (1.5)

where {αn} ⊂ [0, 1], u ∈ C and the step-size µn is chosen as above. It was proved that {xn} defined
by (1.5) converges strongly to a solution of SFP provided limn→∞ αn = 0 and Σ∞n=1αn = ∞.

After that, there have been many modifications of the CQ algorithm and the self-adaptive method
established in the recent years (see also [32, 33]).

In solving SFP, in p -uniformly convex and uniformly smooth real Banach spaces, it was proved
that the {xn} defined by (1.2) converges weakly to a solution of SFP (1.1) provided the duality
mapping J is weak-to-weak continuous and tn ∈

(
0, ( q

Cq‖A‖q )
1

q−1

)
where 1

p + 1
q = 1 and Cq is the

uniform smoothness coefficient of E1. (See [26, 28]). Lately, Wang [30] modified the above algorithm
(1.2) and proved strong convergence by using the idea in the work of Nakajo and Takahashi [21] in
p-uniformly convex Banach spaces which is also uniformly smooth. The main advantage of result of
Wang [30] is that the weak-to-weak continuity of the duality mapping, assumed in [24] is dispensed
with and strong convergence result was achieved.
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A self-adaptive method for solving the split feasibility problem and the fixed point problem 3

The class of left Bregman firmly nonexpansive mappings associated with the Bregman distance
induced by a convex function was introduced and studied by Martin-Marques et al. [17]. If C

is a nonempty and closed subset of int(dom f), where f is a Legendre and Fréchet differentiable
function, and T : C → int (dom f) is a left Bregman strongly nonexpansive mapping, it is proved
that F (T ) is closed (see [17]). In addition, they have shown that this class of mappings is closed
under composition and convex combination and proved weak convergence of the Picard iterative
method to a fixed point of a mapping under suitable conditions (see [16]). However, Picard iteration
process has only weak convergence.

Recently, Shehu et al.[26] introduced an algorithm for solving split feasibility problems and
fixed point problems such that the strong convergence is guaranteed by using Halpern’s iteration
process. Let u ∈ E1 be fixed, u1 ∈ E1 arbitrarily. Let {xn} be the sequence generated by the
following manner:

xn = ΠCJq
E∗

1
[Jp

E1
(un)− tnA∗Jp

E2
(Aun − PQ(Aun))],

un+1 = ΠCJq
E∗

1
(αnJp

E1
(u) + (1− αn)Jp

E1
(Txn)), n ≥ 1, (1.6)

where {αn} ⊂ (0, 1). It was proved that if αn → 0,
∑∞

n=1 αn = ∞ and tn ∈
(
0, ( q

Cq‖A‖q )
1

q−1

)
, then

{xn} generated by (1.6) converges strongly to a solution of the SFP and fixed point of T which is
a left Bregman strongly nonexpansive mappings.

In this paper, motivated by the works of López et al. [14] and Shehu et al. [26], we introduce a
new self-adaptive method for solving the split feasibility problem and the fixed point problem of left
Bregman strongly nonexpansive mappings in Banach spaces. We then prove its strong convergence
of the sequence generated by our scheme in p -uniformly convex real Banach spaces which are also
uniformly smooth. The advantage of our algorithm lies in the fact that step-sizes are dynamically
chosen and not depend on the operator norm. Numerical experiments and some comparisons are
included to show the effectiveness of the our algorithm. Our results mainly improve the results of
Shehu et al. [26] and also complement many other results in the literature.

2 Preliminaries and lemmas

Let E be a real Banach space with norm ‖ · ‖, and E∗ denotes the Banach dual of E endowed
with the dual norm ‖ · ‖∗. Let 1 < q ≤ 2 ≤ p with 1

p + 1
q = 1. The modulus of convexity

δE : [0, 2] → [0, 1] is defined as

δE(ε) = inf{1− ‖x + y‖
2

: ‖x‖ = 1 = ‖y‖, ‖x− y‖ ≥ ε}.

E is called uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2] and p-uniformly convex if there is a
Cp > 0 such that δE(ε) ≥ Cpε

p for any ε ∈ (0, 2]. The modulus of smoothness ρE(τ) : [0,∞) →
[0,∞) is defined by

ρE(τ) = {‖ x + τy ‖ + ‖ x− τy ‖
2

− 1 : ‖x‖ = ‖y‖ = 1}.

E is called uniformly smooth if lim
τ→0

ρE(τ)
τ = 0 and q-uniformly smooth if there is a Cq > 0 such

that ρE(τ) ≤ Cqτ
q for any τ > 0. The Lp space is 2-uniformly convex for 1 < p ≤ 2 and p-uniformly
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A self-adaptive method for solving the split feasibility problem and the fixed point problem 4

convex for p ≥ 2. It is known that E is p-uniformly convex if and only if its dual E∗ is q-uniformly
smooth (see [13]).

The duality mapping Jp
E is one-to-one, single-valued and satisfies Jp

E = (Jq
E∗)−1, where Jq

E∗

the duality mapping of E∗ (see [2, 11, 23]). Here the duality mapping Jp
E : E → 2E∗

defined by

Jp
E(x) = {x ∈ E∗ : 〈x, x〉 = ‖x‖p, ‖x‖ = ‖x‖p−1}.

The duality mapping Jp
E is said to be weak-to-weak continuous if

xn ⇀ x ⇒ 〈Jp
Exn, y〉 → 〈Jp

Ex, y〉

holds true for any y ∈ E. It is worth noting that the `p(p > 1) space has such a property, but the
Jp

E(p > 2) space does not share this property.

Let f : E → R, the Bregman distance with respect to f is defined as:

∆f (x, y) = f(y)− f(x)− 〈f ′(x), y − x〉, x, y ∈ E

It is worth noting that the duality mapping Jp is in fact the derivative of the function fp(x) = 1
p‖x‖

p.

Then the Bregman distance with respect to fp is given by

∆p(x, y) =
1
q
‖x‖p − 〈Jp

Ex, y〉+
1
p
‖y‖p

=
1
p
(‖y‖p − ‖x‖p) + 〈Jp

Ex, x− y〉

=
1
q
(‖x‖p − ‖y‖p)− 〈Jp

Ex− Jp
Ey, x〉.

We know the following inequality which was proved by Xu [31].

Lemma 2.1. [31] Let x, y ∈ E. If E is q-uniformly smooth, then there exists Cq > 0 such that

‖x− y‖q ≤ ‖x‖q − q〈y, Jq
E(x)〉+ Cq‖y‖q.

Let x, y, z ∈ E, one can easily get

∆p(x, y) + ∆p(y, z)−∆p(x, z) = 〈x− y, Jp
Ez − Jp

Ey〉, (2.1)

∆p(x, y) + ∆p(y, x) = 〈x− y, Jp
Ex− Jp

Ey〉 (2.2)

and

∆p(x, y) =
‖x‖p

p
+
‖y‖p

q
− 〈x, Jp

E(y)〉, (2.3)

where 1
p + 1

q = 1.

For the p-uniformly convex space, the metric and Bregman distance has the following relation
(see [24]):

τ‖x− y‖p ≤ ∆p(x, y) ≤ 〈x− y, Jp
Ex− Jp

Ey〉, (2.4)

where τ > 0 is some fixed number.
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Proposition 2.2. [5, 12] Let E be a smooth and uniformly convex Banach space. Let {xn} and
{yn} be two sequences in E such that ∆p(xn, yn) → 0. If {yn} is bounded, then ‖xn − yn‖ → 0.

Let C be a nonempty, closed and convex subset of E. The metric projection

PCx = argminy∈C‖x− y‖, x ∈ E,

is the unique minimizer of the norm distance, which can be characterized by a variational inequality:

〈Jp
E(x− PCx), z − PCx〉 ≤ 0, ∀z ∈ C. (2.5)

Likewise, one can define the Bregman projection:

ΠCx = argminy∈C∆p(x, y), x ∈ E,

as the unique minimizer of the Bregman distance (see [25]). The Bregman projection can also be
characterized by a variational inequality:

〈Jp
E(x)− Jp

E(ΠCx), z −ΠCx〉 ≤ 0, ∀z ∈ C. (2.6)

Moreover, we have

∆p(ΠCx, z) ≤ ∆p(x, z)−∆p(x,ΠCx), ∀z ∈ C. (2.7)

Let E be a strictly convex, smooth and reflexive Banach space. Following [2, 9], we make use of
the function Vp : E∗ × E → [0,+∞), which is defined by

Vp(x, x) = 1
q‖x‖

q − 〈x, x〉+ 1
p‖x‖

p, ∀x ∈ E, x ∈ E∗,

where 1
p + 1

q = 1. Then Vp is nonnegative and

Vp(x, x) = ∆p(J
q
E∗(x), x) (2.8)

for all x ∈ E and x ∈ E∗. Moreover, using the subdifferential inequality for f(x) = 1
q‖x‖

q, x ∈ E∗,
we have

〈Jq
E(x), y〉 ≤ 1

q
‖x + y‖q − 1

q
‖x‖q, ∀x, y ∈ E∗. (2.9)

Using (2.9), we have

Vp(x, x) + 〈y, Jq
E∗(x)− x〉 ≤ Vp(x + y, x) (2.10)

for all x ∈ E and x̄, ȳ ∈ E∗ (see, for example, [27, 29]). In addition, Vp is convex in the first variable
since ∀z ∈ E,

∆p

(
Jq

E∗

(
N∑

i=1

tiJ
p
E(xi)

)
, z

)
= Vp

(
N∑

i=1

tiJ
p
E(xi), z

)
≤

N∑
i=1

ti∆p(xi, z), (2.11)

where {xi}N
i=1 ⊂ E and {ti}N

i=1 ⊂ (0, 1) with
∑N

i=1 ti = 1.

Let C be a convex subset of int domfp, where fp(x) = 1
p‖x‖

p, 2 ≤ p < ∞ and let T be a
salf-mapping of C. A point p ∈ C is said to be an asymptotic fixed point (please, see [10, 22]) of
T if C contains a sequence {xn}∞n=1 which converges weakly to p and lim

n→∞
‖xn − Txn‖ = 0. The

set of asymptotic fixed points of T is denoted by F̂ (T ).
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Definition 2.3. A nonlinear mapping T with a nonempty asymptotic fixed point set is said to
be: (i) left Bregman strongly nonexpansive (L-BSNE) (see [16, 17]) with respect to a nonempty
F̂ (T ) if

∆p(Tx, x̄) ≤ ∆p(x, x̄), ∀x ∈ C, x̄ ∈ F̂ (T )

and if whenever {xn} ⊂ C is bounded, x̄ ∈ F̂ (T ) and

lim
n→∞

(∆p(xn, x̄)−∆p(Txn, x̄)) = 0,

it follows that
lim

n→∞
∆p(xn, Txn) = 0.

(ii) An operator T : C → E is said to be: left Bregman firmly nonexpansive (L-BFNE) if

〈JE
p (Tx)− JE

p (Ty), Tx− Ty〉 ≤ 〈JE
p (Tx)− JE

p (Ty), x− y〉

for any x, y ∈ C.

The class of left Bregman strongly nonexpansive mappings is of particular significance in fixed
point, iteration and convex optimization theories mainly because it is closed under composition.
For more information and examples of L-BSNE and L-BFNE operators. From [16, 17], we know
that every left Bregman firmly nonexpansive mapping is left Bregman strongly nonexpansive if
F (T ) = F̂ (T ).

We also need the following tools in analysis which will be used in the sequel.

Lemma 2.4. [15] Let {sn} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {sni} of {sn} which satisfies sni < sni+1 for all i ∈ N. Define
the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : sk < sk+1},

where n0 ∈ N such that {k ≤ n0 : sk < sk+1} 6= ∅. Then, the following hold:
(i) τ(n0) ≤ τ(n0 + 1) ≤ ... and τ(n) →∞;
(ii) sτ(n) ≤ sτ(n)+1 and sn ≤ sτ(n)+1,∀n ≥ n0.

Lemma 2.5. [31] Let {an} be a sequence of nonnegative real numbers satisfying the following

relation :
an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 1,

where (i) {αn} ⊂ [0, 1],
∞∑

n=1
αn = ∞; (ii) lim sup

n→∞
σn ≤ 0; (iii) γn ≥ 0; (n ≥ 1),

∞∑
n=1

γn < ∞. Then,

an → 0 as n →∞.

We shall adopt the following notations in this paper:
• xn → x means that xn → x strongly;
• xn ⇀ x means that xn → x weakly;
• ωw(xn) := {x : ∃xnj ⇀ x} is the weak ω-limit set of the sequence {xn}∞n=1.
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3 Main results

In this section, we prove strong convergence theorem for the split feasibility problem in Banach
spaces.

Theorem 3.1. Let E1 and E2 be two p-uniformly convex real Banach spaces which are also uni-
formly smooth. Let C and Q be nonempty, closed and convex subsets of E1 and E2, respectively.
Let A : E1 → E2 be a bounded linear operator and A∗ : E∗

2 → E∗
1 be the adjoint of A. Let T be a

left Bregman strongly nonexpansive mapping of C into it self such that F (T ) = F̂ (T ) and F (T ) ∩
Ω 6= ∅. Let {αn} be a sequence in (0,1). For a fixed u ∈ E1, let sequences {xn}∞n=1 and {un}∞n=1

be iteratively generated by u1 ∈ E1,xn = ΠCJq
E∗

1
[Jp

E1
(un)− ρn

fp−1(un)
||∇f(un)||p∇f(un)],

un+1 = ΠCJq
E∗

1
(αnJp

E1
(u) + (1− αn)Jp

E1
(Txn)), n ≥ 1,

(3.1)

where f(un) = 1
p‖(I − PQ)Aun‖p, ∇f(un) = A∗Jp

E2
(Aun − PQ(Aun)). If αn → 0.

∞∑
n=1

αn = ∞

and {ρn} ⊂ (0,∞) satisfies

inf
n

ρn(pq − Cqρ
q−1
n ) > 0.

Then the sequence {un}∞n=1 converges strongly to an element x∗ ∈ F (T ) ∩ Ω, where x∗ =
ΠF (T )∩Ωu.

Proof. We note that ∇f(un) = A∗Jp
E2

(Aun − PQ(Aun)) for all n ∈ N. Set

yn = Jp
E1

(un)− ρn
fp−1(un)
||∇f(un)||p∇f(un)

for all n ∈ N. We see that (p− 1)q = p. Then, by Lemma 2.1, we have

‖yn||q = ‖Jp
E1

(un)− ρn
fp−1(un)
||∇f(un)||p

∇f(un)||q

≤ ||un||p − qρn
fp−1(un)
||∇f(un)||p

〈un,∇f(un)〉+ Cqρ
q
n

f (p−1)q(un)
||∇f(un)||pq

||∇f(un)||q

= ‖un||p − qρn
fp−1(un)
||∇f(un)||p

〈un,∇f(un)〉+ Cqρ
q
n

fp(un)
||∇f(un)||p

. (3.2)

Set vn = Jq
E∗

1
[Jp

E1
(un)− ρn

fp−1(un)
||∇f(un)||p∇f(un)] for all n ≥ 1. Then, we have xn = ΠCvn for all n ≥ 1.
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Let x∗ = ΠF (T )∩Ωu. Then by (3.2), we have

∆p(xn, x∗) ≤ ∆p(vn, x∗) = ∆p(J
q
E∗

1
[Jp

E1
(un)− ρn

fp−1(un)
||∇f(un)||p

∇f(un)], x∗)

=
||x∗||p

p
+

1
q
||Jp

E1
(un)− ρn

fp−1(un)
||∇f(un)||p

∇f(un)||q − 〈Jp
E1

(un), x∗〉

+ρn
fp−1(un)
||∇f(un)||p

〈x∗,∇f(un)〉

≤ 1
q
||un||p − ρn

fp−1(un)
||∇f(un)||p

〈un,∇f(un)〉+
Cq

q
ρq

n

fp(un)
||∇f(un)||p

−〈x∗, Jp
E1

(un)〉+ ρn
fp−1(un)
||∇f(un)||p

〈x∗,∇f(un)〉+
‖x∗‖

p

p

=
1
q
||un||p − 〈x∗, Jp

E1
(un)〉+

‖x∗‖
p

p

+ ρn
fp−1(un)
||∇f(un)||p

〈x∗ − un,∇f(un)〉

+
Cq

q
ρq

n

fp(un)
||∇f(un)||p

= ∆p(un, x∗) + ρn
fp−1(un)
||∇f(un)||p

〈x∗ − un,∇f(un)〉+
Cq

q
ρq

n

fp(un)
||∇f(un)||p

. (3.3)

On the other hand, we see that

〈∇f(un), x∗ − un〉 = 〈A∗Jp
E2

(Aun − PQ(Aun)), x∗ − un〉

= 〈Jp
E2

(Aun − PQ(Aun)), Ax∗ −Aun〉

= 〈Jp
E2

(Aun − PQ(Aun)), PQ(Aun)−Aun〉

+〈Jp
E2

(Aun − PQ(Aun)), Ax∗ − PQ(Aun)〉

≤ −‖Aun − PQ(Aun)‖p = −pf(un). (3.4)

By (3.3) and (3.4), we obtain

∆p(xn, x∗) ≤ ∆p(vn, x∗) ≤ ∆p(un, x∗) +
Cq

q
ρq

n

fp(un)
‖∇f(un)‖p

− ρn
pfp(un)

‖∇f(un)‖p

= ∆p(un, x∗) +
(

Cq

q
ρq

n − ρnp

)
fp(un)

‖∇f(un)‖p
. (3.5)

Since inf
n

ρn(pq − Cqρ
q−1
n ) > 0, we have

∆p(xn, x∗) ≤ ∆p(un, x∗), ∀n ≥ 1.

Now using (3.1), we have

∆p(xn+1, x
∗) ≤ ∆p(un+1, x

∗) ≤ ∆p(J
q
E∗

1
(αnJp

E1
(u) + (1− αn)Jp

E1
(Txn)), x∗)

≤ αn∆p(u, x∗) + (1− αn)∆p(Txn, x∗)

≤ αn∆p(u, x∗) + (1− αn)∆p(xn, x∗) (3.6)

≤ max{∆p(u, x∗),∆p(xn, x∗)}
...
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≤ max{∆p(u, x∗),∆p(x1, x
∗)}.

Hence {un}∞n=1 is bounded. Also {xn}∞n=1 is bounded.

Let bn := Jq
E∗

1
(αnJp

E1
(u) + (1− αn)Jp

E1
(Txn)), n ≥ 1. Then we obtain

∆p(bn, Txn) ≤ αn∆p(u, Txn) + (1− αn)∆p(Txn, Txn)

= αn∆p(u, Txn) → 0, n →∞.

Set wn = αnJp
E1

(u) + (1− αn)Jp
E1

(Txn) for all n ≥ 1. We next consider the following estimation:

∆p(xn+1, x
∗) ≤ ∆p(un+1, x

∗) = ∆p(ΠCbn, x∗) ≤ ∆p(bn, x∗)−∆p(bn,ΠCbn)

= ∆p(J
q
E∗

1
[αnJp

E1
(u) + (1− αn)Jp

E1
(Txn)], x∗)−∆p(bn,ΠCbn)

= Vp(αnJp
E1

(u) + (1− αn)Jp
E1

(Txn), x∗)−∆p(bn,ΠCbn)

≤ Vp(αnJp
E1

(u) + (1− αn)Jp
E1

(Txn)− αn(Jp
E1

(u)− Jp
E1

(x∗)), x∗)

+αn〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wn)− x∗〉 −∆p(bn,ΠCbn)

= Vp(αnJp
E1

(x∗) + (1− αn)Jp
E1

(Txn), x∗)

+αn〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wn)− x∗〉 −∆p(bn,ΠCbn)

≤ (1− αn)Vp(J
p
E1

(Txn), x∗)

+αn〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wn)− x∗〉 −∆p(bn,ΠCbn)

= (1− αn)∆p(Txn, x∗) + αn〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wn)− x∗〉

−∆p(bn,ΠCbn)

≤ (1− αn)∆p(xn, x∗) + αn〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wn)− x∗〉

−∆p(bn,ΠCbn). (3.7)

Let sn = ∆p(xn, x∗) ∀n ∈ N. Then, by (3.7), we have

sn+1 ≤ (1− αn)sn + αn〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wn)− x∗〉 −∆p(bn,ΠCbn). (3.8)

We next consider the following two cases:
Case 1: Suppose that there exists n0 ∈ N such that {∆p(xn, x∗)}∞n=n0

is non-increasing. Then
{∆p(xn, x∗)}∞n=1 converges and ∆p(xn, x∗)−∆p(xn+1, x

∗) → 0, n →∞. Now, from (3.5), we obtain

(ρnp− Cq

q
ρq

n)
fp(un)

‖∇f(un)‖p
≤ ∆p(un, x∗)−∆p(xn, x∗). (3.9)

Also, from (3.6), we have

∆p(un+1, x
∗) ≤ αn∆p(u, x∗) + ∆p(xn, x∗). (3.10)

Putting (3.10) into (3.9), we have

(ρnp− Cq

q
ρq

n)
fp(un)

‖∇f(un)‖p
≤ ∆p(un, x∗)−∆p(xn, x∗)

≤ αn−1∆p(u, x∗) + ∆p(xn−1, x
∗)−∆p(xn, x∗). (3.11)

By inf
n

ρn(pq − Cqρ
q−1
n ) > 0 and (3.11), we have
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0 < (ρnp− Cq

q ρq
n) fp(un)
‖∇f(un)‖p ≤ αn−1∆p(u, x∗) + ∆p(xn−1, x

∗)−∆p(xn, x∗) → 0, n →∞.

It follows that f(un) → 0, n →∞, since {‖∇f(un)‖} is bounded. Hence

lim
n→∞

‖Aun − PQ(Aun)‖ = 0. (3.12)

From (3.8), we have

0 ≤ ∆p(bn,ΠCbn) ≤ (sn − sn+1) + αn[〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wn)− x∗〉 − sn] → 0, n →∞.

Hence, by Proposition 2.2, we obtain

‖bn −ΠCbn‖ → 0, n →∞. (3.13)

It also follows that

0 ≤ ‖Jp
E1

(vn)− Jp
E1

(un)‖ = ‖Jp
E1

(un)− ρn
fp−1(un)
‖∇f(un)‖p

∇f(un)− Jp
E1

(un)‖

= ‖ρn
fp−1(un)
‖∇f(un)‖p

∇f(un)‖ → 0, n →∞.

Therefore, we obtain
lim

n→∞
‖Jp

E1
(vn)− Jp

E1
(un)‖ = 0.

Since Jq
E∗

1
is norm-to-norm uniformly continuous on bounded subsets of E∗

1 , we have

lim
n→∞

‖vn − un‖ = 0.

Furthermore, we have from (2.7), (3.5) and (3.6) that

∆p(vn, xn) = ∆p(vn,ΠCvn) ≤ ∆p(vn, x∗)−∆p(xn, x∗)

≤ ∆p(un, x∗)−∆p(xn, x∗)

≤ αn−1M
∗ + ∆p(xn−1, x

∗)−∆p(xn, x∗) → 0, n →∞,

for some M∗ > 0. By Proposition 2.2, we have that ‖vn − xn‖ → 0, n →∞.

Hence,

‖xn − un‖ ≤ ‖xn − vn‖+ ‖vn − un‖ → 0, n →∞.

Observe that ∆p(xn+1, x
∗) ≤ ∆p(un+1, x

∗) ≤ αn∆p(u, x∗) + (1− αn)∆p(Txn, x∗).
It then follows that

∆p(xn, x∗)−∆p(Txn, x∗) = ∆p(xn, x∗)−∆p(xn+1, x
∗) + ∆p(xn+1, x

∗)−∆p(Txn, x∗)

≤ ∆p(xn, x∗)−∆p(xn+1, x
∗) + αn(∆p(u, x∗)−∆p(Txn, x∗))

→ 0, n →∞.

Then we obtain
lim

n→∞
∆p(xn, Txn) = 0.
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Since {xn} is bounded, there exists {xnj} of {xn} that converges weakly to z. Now, since xnj ⇀ z

and lim
n→∞

‖xn−un‖ = 0, we obtain a subsequence {unj} of {un} that unj ⇀ z. Since F (T ) = F̂ (T ),
we have z ∈ F (T ).

Next, we show that z ∈ Ω. From (2.2), (2.4) and (2.6), we have

∆p(z, ΠCz) ≤ 〈Jp
E1

(z)− Jp
E1

(ΠCz), z −ΠCz〉

= 〈Jp
E1

(z)− Jp
E1

(ΠCz), z − unj 〉+ 〈Jp
E1

(z)− Jp
E1

(ΠCz), unj −ΠCunj 〉

+〈Jp
E1

(z)− Jp
E1

(ΠCz),ΠCunj −ΠCz〉

≤ 〈Jp
E1

(z)− Jp
E1

(ΠCz), z − unj 〉+ 〈Jp
E1

(z)− Jp
E1

(ΠCz), unj −ΠCunj 〉

→ 0,

as j → ∞. So we have ∆p(z,ΠCz) = 0. Thus, z ∈ C. Let us now fix x ∈ C such that Ax ∈ Q.

Then

‖Aunj − PQ(Aunj )‖p = 〈Jp
E2

(Aunj − PQ(Aunj )), Aunj − PQ(Aunj )〉

= 〈Jp
E2

(Aunj − PQ(Aunj )), Aunj −Ax)〉

+〈Jp
E2

(Aunj − PQ(Aunj ), Ax− PQ(Aunj )〉

≤ 〈Jp
E2

(Aunj − PQ(Aunj )), Aunj −Ax)〉

≤ M‖A∗(I − PQ)Aunj‖p−1

→ 0, n →∞.

where M > 0 is sufficiently large number. It then follows from (2.5) that

‖Az − PQ(Az)‖p = 〈Jp
E2

(Az − PQ(Az)), Az − PQ(Az)〉

= 〈Jp
E2

(Az − PQ(Az)), Az −Aunj 〉+ 〈Jp
E2

(Az − PQ(Az)), Aunj − PQ(Aunj )〉

+〈Jp
E2

(Az − PQ(Az), PQ(Aunj )− PQ(Az)〉

≤ 〈Jp
E2

(Az − PQ(Az)), Az −Aunj 〉+ 〈Jp
E2

(Az − PQ(Az)), Aunj − PQ(Aunj )〉.

Since unj ⇀ z, Aunj ⇀ Az and ‖Aunj − PQ(Aunj )‖ → 0, j →∞, it follows that

‖Az − PQ(Az)‖ = 0.

Hence, Az ∈ Q. This shows that z ∈ Ω and therefore z ∈ F (T ) ∩ Ω.

Moreover, we see that

∆p(xn, bn) ≤ αn∆p(xn, u) + (1− αn)∆p(xn, Txn) → 0, n →∞.

It follows that ‖xn − bn‖ → 0, n →∞. We next show that

lim sup
n→∞

〈Jp
E1

(u)− Jp
E1

(x∗), bn − x∗〉 ≤ 0.

We choose a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈Jp
E1

(u)− Jp
E1

(x∗), xn − x∗〉 = lim
j→∞

〈Jp
E1

(u)− Jp
E1

(x∗), xnj − x∗〉.
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From ‖xn − bn‖ → 0, n →∞ and (2.6), we obtain

lim sup
n→∞

〈Jp
E1

(u)− Jp
E1

(x∗), bn − x∗〉 = lim sup
n→∞

〈Jp
E1

(u)− Jp
E1

(x∗), xn − x∗〉

= 〈Jp
E1

(u)− Jp
E1

(x∗), z − x∗〉 ≤ 0. (3.14)

Note that ‖Jp
E1

(Txn) − wn‖ = αn‖Jp
E1

(Txn) − Jp
E1

(u)‖ → 0, n → ∞. On the other hand, we see
that

‖Jp
E1

(bn)− wn‖ = ‖αnJp
E1

(u) + (1− αn)Jp
E1

(Txn)− wn‖

≤ αn‖Jp
E1

(u)− wn‖+ ‖Jp
E1

(Txn)− wn‖ → 0, n →∞.

This shows that ‖bn − Jq
E∗

1
(wn)‖ → 0, n →∞. So we obtain by (3.14)

lim sup
n→∞

〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wn)− x∗〉 ≤ 0. (3.15)

Now, using (3.8), (3.15) and Lemma 2.5, we obtain ∆p(xn, x∗) → 0, n → ∞. Hence, xn → x∗ as
n →∞. Also we have ‖un − x∗‖ ≤ ‖un − xn‖+ ‖xn − x∗‖ → 0, n →∞. Thus un → x∗ as n →∞.

Case 2: Assume that {sn} is not monotonically decreasing sequence, and let τ : N → N be as
in Lemma 2.4. We see that, by Lemma 2.4 (ii)

∆p(xτ(n), x
∗)−∆p(Txτ(n), x

∗) = ∆p(xτ(n), x
∗)−∆p(xτ(n)+1, x

∗) + ∆p(xτ(n)+1, x
∗)

−∆p(Txτ(n), x
∗)

≤ αn(∆p(u, x∗)−∆p(Txτ(n), x
∗))

→ 0, n →∞.

It then follows that
lim

n→∞
∆p(xτ(n), Txτ(n)) = 0.

Similar to Case 1, we can show that ‖Auτ(n) − PQAuτ(n)‖ → 0, n →∞ and

lim sup
n→∞

〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wτ(n))− x∗〉 ≤ 0.

Also from (3.8), we have that

sτ(n)+1 ≤ (1− ατ(n))sτ(n) + ατ(n)〈J
p
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wτ(n))− x∗〉,

which gives

sτ(n) ≤ 〈Jp
E1

(u)− Jp
E1

(x∗), Jq
E∗

1
(wτ(n))− x∗〉.

So by Lemma 2.5, we obtain
lim

n→∞
sτ(n) = 0.

We next show that limn→∞ sτ(n)+1 = 0. To show this, it suffices to prove that

‖xτ(n)+1 − xτ(n)‖ → 0, n →∞.
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Indeed, by (3.13), we observe that

‖xτ(n) − uτ(n)+1‖ 6 ‖xτ(n) − bτ(n)‖+ ‖bτ(n) −ΠCbτ(n)‖+ ‖ΠCbτ(n) − uτ(n)+1‖→ 0, n →∞.

This shows that

‖xτ(n)+1 − xτ(n)‖ ≤ ‖xτ(n)+1 − uτ(n)+1‖+ ‖uτ(n)+1 − xτ(n)‖ → 0, n →∞.

From (2.1), it follows that

∆p(x∗, xτ(n)+1) + ∆p(xτ(n)+1, xτ(n))−∆p(x∗, xτ(n)) = 〈x∗ − xτ(n)+1, J
p
E1

(xτ(n))− Jp
E1

(xτ(n)+1)〉.

Hence

sτ(n)+1 = ∆p(x∗, xτ(n)+1) ≤ ∆p(x∗, xτ(n)) + 〈x∗ − xτ(n)+1, J
p
E1

(xτ(n))− Jp
E1

(xτ(n)+1)〉 → 0.

Thus, by Lemma 2.4, we obtain 0 ≤ sn ≤ sτ(n)+1, which implies that lim
n→∞

sn = 0. This shows that
xn → x∗ as n →∞, and hence un → x∗ as n →∞. We thus complete the proof.

4 Numerical Experiments

In this section, we provide some numerical examples and illustrate its performance by using
Algorithm (3.1). Firstly, numerical results are shown in different choices of the step-size ρn with
different values u and u1.

Example 4.1 Let E1 = E2 = L2([0, 1]) with the inner product given by

〈f, g〉 =
∫ 1

0
f(t)g(t)dt.

Let
C := {x ∈ L2([0, 1]) : ‖x‖L2 ≤ 1}.

Then

ΠC(x) = PC(x) =

{
x, ‖x‖ ≤ 1

x
‖x‖ , ‖x‖ > 1.

Also, let
Q := {x ∈ L2([0, 1]) : 〈x, a〉 = b},

where a = t
2 , b = 0. Then

PQ(x) =
b− 〈a, x〉
‖a‖2

2

a + x.

Let us assume that A : L2([0, 1]) → L2([0, 1]), (Ax)(t) = x(t)
2 . Then A is a bounded linear operator

and A∗ = A. Suppose that we take operator T in Theorem 3.1 as T := PC , the metric projection
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on C (please see [16, 17]). Take αn = 1
n+1 , ∀n ≥ 1, then our iterative scheme (3.1) becomes

xn = PC [un − ρn
f(un)

‖∇f(un)‖2
A∗(Aun − PQ(Aun))]

un+1 = PC [
u

n + 1
+ (1− 1

n + 1
)(PCxn)], n ≥ 1, (4.1)

where f(un) = 1
2‖Aun − PQ(Aun)‖2 and ∇f(un) = A∗(Aun − PQ(Aun)) for all n ∈ N.

We now study the effect (in terms of convergence, number of iterations required and the cpu
time) of the sequence {ρn} ⊂ (0,∞) on the iterative scheme by choosing different ρn such that
inf
n

ρn(4− ρn) > 0 in the following cases.

Case 1: ρn = 0.5n
n+1 ;

Case 2: ρn = n
n+1 ;

Case 3: ρn = 2n
n+1 ;

Case 4: ρn = 3.5n
n+1 .

The stopping criterion is defined by En = 1
2‖Aun − PQ(Aun)‖2

L2
< 10−3, or using stopping

criterion n = 1, 000. We choose different choices of u and u1 as
Choice 1: u = t and u1 = sin(t) + t2;
Choice 2: u = t2 and u1 = et + 2t.

The numerical experiments, using our Algorithm (3.1), for each case and choice are reported in
the following Table 1.

Table 1: Algorithm (3.1) with different cases of ρn and different choices of u and u1

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 26 14 7 4
cpu (Time) 1.247811 0.647647 0.327002 0.191387

Choice 2 No. of Iter. 20 10 5 3
cpu (Time) 0.950551 0.467636 0.235971 0.143973

The error plotting of En for each choice of u and u1 is shown in Figure 1-2, respectively.
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Remark 4.1. From our numerical experiments, it is observed that the different choices of u and
u1 has no effect in terms of cpu run time for the convergence of our algorithm. It is observed that
the number of iterations and the cpu run time are significantly decreasing starting from Case 1 to
Case 4.

Finally, we comparison of convergence of Algorithm (3.1) and Algorithm (1.6). Let αn = 1
n+1 ,

for algorithm (3.1), we take ρn = 0.5n
n+1 and for algorithm (1.6), we take tn = 0.001. We use stopping

criterion n = 1, 000. For points u and u1 randomly, we obtain the following numerical results.
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Table 2: Comparison of Algorithm (3.1) and Algorithm (1.6) in Example 4.1

Algorithm (3.1) Algorithm (1.6)

Choice 1 u = t No. of Iter. 26 > 1,000
u1 = sin(t) + t2 cpu (Time) 1.247811 -

Choice 2 u = t2 No. of Iter. 20 > 1,000
u1 = et + 2t cpu (Time) 0.950551 -

The error plotting n = 1, 000 of Algorithm (3.1) and Algorithm (1.6) for each choice is shown
in Figure 3-4, respectively.
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Remark 4.2. In numerical experiment, it is revealed that the sequence generated by our proposed
Algorithm (3.1) using the self-adaptive technique converges more quickly than by Algorithm (1.6)
of Shehu et al. [26] does.
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