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Abstract

Classification problem is one of the topics in data mining to predict the class or
target of the upcoming data into the correct class. The historical known class data is
used to build the classifier. The problem is called imbalance problem when the number
of data in one class is less than the other class and denoted the minority class as the
class which contains the fewer members. Despite the high accuracy value of the well-
known classifiers for the imbalance problem, the most misclassified class of minority
class still occurred. To reduce the false positive rate, the data in minority class should
be attended from the classification algorithm. The one favorite technique is over-
sampling technique, called SMOTE (Synthetic minority over-sampling technique).In
this study, we investigate the concept, extract the technique of the family of SMOTE

algorithm, as well as, SMOTE, Borderline-SMOTE and Safe-Level SMOTE.
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Chapter 1

Introduction

1.1 The importance and the source of the research

problem

Data mining is the process performing with large amounts of data to discover The
patterns and relationships which is hidden in the data set. In current, Data mining
has been applied in many types of work such as Business, Science and Medical [6].
One technique for data mining that our group used in seminars that is, Classification
which assortment of data by finding the master series, or a series of works that describe
and classify information. The objective is to predict the type of material or informa-
tion that does not identify the type of data that model generated from the analysis of
Training Data. It may be a data group that identifies a category or group. The format
of the show has several such as Classification Rules, Decision Trees and cost sensitive
learning etc [6]. Our seminars of the group is the study of the student’s drop-out

prediction using data and social behaviour of the students. By using the techniques



cost sensitive learning obtain that students who drop-out of students that success is
very different. Also known as Imbalance data that the data set contains a number of
data in each class are different. When the data is very different, there is a problem of
unbalanced classification [3]. In this classification, interested only in most data class
without considering the minority class. Without at least some cases, the information
in this class may have great importance should not be overlooked. For example, from
our seminar. The imbalanced classification problem is that the classifier will classify
the student as a success, without considering drop-out students, which should not
be overlooked. When these problems occur, there are several approaches that can
be used to solve imbalanced classification problems such as random under-sampling,
random over-sampling, clustering-based over sampling, and additional sampling tech-
nique called SMOTE [11]. In this independent study, our group chose SMOTE family
techniques, SMOTE, Borderline-SMOTE, and Safe-Level SMOTE to solve imbalanced
classification problems. This will only interest the data in the minority class. There
is a way to increase the number of data types with less data, increasing the amount
of data close to the most available ones. Randomly increment a value and find the
distance between the values selected for each value. Choose the closest value. This will

result in better classification of information [10].

1.2 Objective

1. To study the specific classification problems for class imbalance data.
2. To study the over-sampling techniques, called SMOTE family algorithm, such
as, SMOTE, Borderline-SMOTE and Safe-Level SMOTE.

3. To describe the advantage and disadvantage of the SMOTE family algorithm.



Chapter 2

Literature Review and Related

Studies

Research of SMOTE, Borderline-SMOTE and Safe-level- SMOTE. The researcher
studied concept, theories and related documents as a guideline for the following re-

search.

2.1 Classification Problems

Classification is one of data mining techniques that have worked on classification
data. for to predict the data we are interested to study by using classifier on clas-
sification. In this classification, we use the data 2 class and the data contained in
the class is different, that is, there is a lot of data in one class and one another class
there is a little of data. To which will use the accuracy value decition, the result of
the classification. In this classification, Most are classified only in majority class and

minority class are not classified, But in some case minority class maybe important or



need to classification. This problem is said to be classification problem.

2.1.1 Class Imbalanced Problems

In case of binary classification problem which the numbers of member in each class
is varied often lead to unsatisfactory results from the focus on the accuracy result
without concern the prediction of new observations, especially for the small class. In
this context, imbalanced classes simply means that the number of observations of one
class (usu. positive or majority class) by far exceeds the number of observations of
the other class (usu. negative or minority class). This setting can be observed fairly
often in practice and in various disciplines like credit scoring, fraud detection, medical
diagnostics or churn management [8].

Most classification methods work best when the number of observations per class are
roughly equal. The problem with imbalanced classes is that because of the dominance
of the majority class classifiers tend to ignore cases of the minority class as noise and
therefore predict the majority class far more often. In order to lay more weight on the
cases of the minority class, there are numerous correction methods which tackle the

imbalanced classification problem [8].

2.2 Over-sampling Technique

2.2.1 Introduction

Oversampling in data analysis are techniques used to adjust the class distribution
of a data set (i.e. the ratio between the different classes/categories represented) [12].

The usual reason for oversampling is to correct for a bias in the original dataset.



One scenario where it is useful is when training a classifier using labeled training data
from a biased source, since labeled training data is valuable but often comes from
un-representative sources [12].

For example, suppose we have a sample of 1000 people of which 66.7% are male.
We know the general population is 50% female, and we may wish to adjust our dataset
to represent this. Simple oversampling will select each female example twice, and this
copying will produce a balanced dataset of 1333 samples with 50% female. Simple
under-sampling will drop some of the male samples at random to give a balanced
dataset of 667 samples, again with 50% female [12].

There are also more complex oversampling techniques, including the creation of

artificial data points [12].

2.3 SMOTE family algorithm

2.3.1 SMOTE
Introduction of SMOTE

There are a number of methods available to over-sample a dataset used in a typical
classification problem (using a classification algorithm to classify a set of images, given
a labeled training set of images). The most common technique is known as SMOTE:
Synthetic Minority Over-sampling Technique. To illustrate how this technique works
consider some training data which has s samples, and f features in the feature space
of the data. Note that these features, for simplicity, are continuous. As an example,
consider a dataset of birds for clarification. The feature space for the minority class

for which we want to over-sample could be beak length, wingspan, and weight (all



continuous). To then over-sample, take a sample from the dataset, and consider its k
nearest neighbors (in feature space). To create a synthetic data point, take the vector
between one of those k neighbors, and the current data point. Multiply this vector by
a random number z which lies between 0, and 1. Add this to the current data point

to create the new, synthetic data point[13].



Algorithm SMOTE
Algorithm SMOTE(T, N, k)
Input: Number of minority class samples ; T ; Amount of SMOTE N%;
Number of nearest neighbors &
Output: (N/100) *T synthetic minority class samples
1. (x If N is less than 100%, randomize the minority class samples as only a random

percent of them will be SMOTEd. * )

2. if N <100

3. then Randomize the T minority class samples
4. T = (N/100) « T

5. N =100

6. endif

7. N = (int)(N/100)(x The amount of SMOTE is assumed to be in integral
multiples of 100. * )
8. k = Number of nearest neighbors
9. numattrs = Number of attributes
10. Sample| |[ |: array for original minority class samples
11. newindez: keeps a count of number of synthetic samples generated, initializd to 0
12. Synthetic[ ][ |: array for synthetic samples
(x* Compute k nearest neighbors for each minority class sample only. *)

13. for i< 1to T

14. Compute k nearest neighbors for i,and save the indices in the nnarray
15. Populate(N , i, nnarray)
16. endfor



Populate(N , i , nnarray) (x Function to ganerate the synthetic samples. x)
-p0 17. while N # 0
18. Choose a random number between 1 and k, call it nn. This step chooses one

of the k nearest neighbors of 7.

19. for attr < 1 to numattrs

20. Compute: dif = Sample[nnarray[nnl|[attr] - Sample[i][attr]
21. Compute: gap = random number between 0 and 1

22. Synthetic[newindex|[attr] = Samplei]|attr] + gapx dif

23. endfor

24. newindexr+-+

25. N=N-1

26. endwhile
27. return (x End of Populate. x)

End of Pseudo - Code. [1]



2.3.2 Borderline-SMOTE

In order to achieve better prediction, most of the classification algorithms attempt
to learn the borderline of each class as exactly as possible in the training process. The
examples on the borderline and the ones nearby (we call them borderline examples in
this paper) are more apt to be misclassified than the ones far from the borderline, and
thus more important for classification.

Based on the analysis above, those examples far from the borderline may contribute
little to classification. We thus present two new minority over-sampling methods,
borderline-SMOTE1 and borderline-SMOTE2, in which only the borderline examples
of the minority class are over-sampled. Our methods are different from the existing
over-sampling methods in which all the minority examples or a random subset of the
minority class are over-sampled [2, 5, 9] .

Our methods are based on SMOTE (Synthetic Minority Over-sampling Technique)
[2]. SMOTE generates synthetic minority examples to over-sample the minority class.
For every minority example, its k (which is set to 5 in SMOTE) nearest neighbors of
the same class are calculated, then some examples are randomly selected from them
according to the over-sampling rate. After that, new synthetic examples are generated
along the line between the minority example and its selected nearest neighbors. Not
like the existing over-sampling methods, our methods only oversample or strengthen
the borderline minority examples. First, we find out the border-line minority examples;
then, synthetic examples are generated from them and added to the original training
set. Suppose that the whole training set is T, the minority class is P and the majority

class is N, and

P:{p17p27 "'7ppnum}a N - {nh na, ..., nnnum}

9



where pnum and nnum are the number of minority and majority examples. The

detailed procedure of borderline-SMOTE]1 is as follows.

Step.1 For every p; (i = 1,2,...,pnum) in the minority class P,we calculate its m
nearest neighbors from the whole training set T. The number of majority examples

among the m nearest neighbors is denoted by m’( 0 <m’<m )

Step 2. If m’=m i.e. all the m nearest neighbors of p; are majority examples,p; is
considered to be noise and is not operated in the following steps. If m/2<m’<m,namely
the number of plsmajority nearest neighbors is larger than the number of its minority
ones,p; is considered to be easily misclassified and put into

a set DANGER. If 0<m’<m,p; is safe and needs not to participate in the follows steps.

Step 8. The examples in DANGER are the borderline data of the minority class

P, and we can see that P DANGER CP.we set
DANGER = {p}, Py, s P s 0<dnum<pnum

For each example in DANGER, we calculate its knearest neighbors from P

Step 4. In this step, we generate sx dnum synthetic positive examples from the data in
DANGER, where s is an integer between 1 and k . For each p,, we randomly select s
nearest neighbors from its k nearest neighbors in P. Firstly, we calculate the differences
dif;j(j=1,2,...,s) between pj and its s nearest neighbors from P, then multiplydif; by
a random number r;( j =1,2,...,s) between 0 and 1, finally, s new synthetic minority

examples are generated between p, and its nearest neighbors:

10



synthetic; = p}, +r; x dif;, j=1,2,....s

We repeat the above procedure for each p} in DANGER and can attain sx dnumsynthetic

examples. This step is similar with SMOTE, for more detail see.

In the procedure above p;, n;, p;, dif; and synthetic; are vectors. We can see
that new synthetic data are generated along the line between the minority borderline
examples and their nearest neighbors of the same class, thus strengthened the border-
line examples.

Borderline-SMOTE2 not only generates synthetic examples from each example in
DANGER and its positive nearest neighbors in P,but also does that from its nearest
negative neighbor in N. The difference between it and its nearest negative neighbor is
multiplied a random number between 0 and 0.5, thus the new generated examples are

closer to the minority class [7].

11



2.3.3 Safe-level-SMOTE

Based on SMOTE, Safe-Level-SMOTE, Safe-Level-Synthetic Minority Oversam-
pling TEchnique, assigns each positive instance its safe level before generating syn-
thetic instances. Each synthetic instance is positioned closer to the largest safe level so
all synthetic instances are generated only in safe regions. The safe level (sl) is defined
as formula (1). If the safe level of an instance is close to 0, the instance is nearly noise.
If it is close to k, the instance is considered safe. The safe level ratio is defined as

formula (2). It is used for selecting the safe positions to generate synthetic instances.

safe level (sl)=the number of a positive stances in k nearest neighbours. (1)

safe level ratio = sl of a positive instance / sl of a nearest neighbours.  (2)

Safe-Level-SMOTE algorithm

All variables in this algorithm are described as follows. p is an instance in the set of
all original positive instances D. n is a selected nearest neighbours of p.
s included in the set of all synthetic positive instances D’is a synthetic instance. sl,
and sl,, are safe level of p and safe level of n respectively.sl,.atio is safe level ratio.
numattrs is the number of attributes.dif is the difference between the values of n and
p at the same attribute id. gap is a random fraction of dif. pfi/,n[i] and s[i] are the
numeric values of the instances at i’ attribute. p, n and s are vectors. sl, , sl, , sl atio
, numattrs , dif , and gap are scalars.

After assigning the safe level 1 to p and the safe level to n, the algorithm calculates
the safe level ratio. There are five cases corresponding to the value of safe level ratio
showed in the lines 12 to 28 of algorithm.

The first case showed in the lines 12 to 14 of algorithm. The safe level ratio is equal

to oo and the safe level of p is equal to 0. It means that both p and n are noises. If

12



this case occurs, synthetic instance will not be generated because the algorithm does
not want to emphasize the important of noise regions.

The second case showed in the lines 17 to 19 of algorithm. The safe level ratio is
equal to oo and the safe level of p is not equal to 0. It means that n is noise. If
this case occurs, a synthetic instance will be generated far from noise instance n by
duplicating p because the algorithm want to avoid the noise instance n.

The third case showed in the lines 20 to 22 of algorithm. The safe level ratio is
equal to 1. It means that the safe level of p and n are the same. If this case occurs,
a synthetic instance will be generated along the line between p and n because p is as
safe as n.

The fourth case showed in the lines 23 to 25 of algorithm. The safe level ratio is
greater than 1. It means that the safe level of p is greater than that of n. If this case
occurs, a synthetic instance is positioned closer to p because p is safer than n. The
synthetic instance will be generated in the range [0, 1 / safe level ratio|.

The fifth case showed in the lines 26 to 28 of algorithm. The safe level ratio is less
than 1. It means that the safe level of p is less than that of n. If this case occurs, a
synthetic instance is positioned closer to n because n is safer than p. The synthetic
instance will be generated in the range [1 - safe level ratio, 1].

After each iteration of for loop in line 2 finishes, if the first case does not occurs, a
synthetic instance s will be generated along the specific-ranged line between p and n,
and then s will be added to D".

After the algorithm terminates, it returns a set of all synthetic instances D’. The
algorithm generates |D| - t synthetic instances where |D| is the number of all positive

instances in D, and ¢ is the number of instances that satisfy the first case.

13



Algorithm: Safe-Level-SMOTE
Input: a set of all original positive instances D
Output: a set of all synthetic positive instances D’
1. D=9
2. for each positive instance p in D
3. compute k nearest neighbours for p in D and
randomly select one from the k nearest neighbours, call it n
4. sl,= the number of positive stances in k nearest neighbours for p in D

5. sl,= the number of positive stances in k nearest neighbours for n in D

6. if (sl, #0); sl is safe level.

7. slyatio = sl,/sl,; slyatio is safe level ratio.
8 }
9. else{

10.  sl.atio =00

1. }

12. if (sl,atio=00 AND sl, = 0) { ; the 1% case

13.  does not generate positive synthetic instance

4. }

15. else{

16. for (atti = 1 to numattrs) { ; numattrs is the number of attributes.
17.  if (sl,atio=00 AND sl, # 0) { ; the 2" case

18. gap=0

9.}

14



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

else if (sl,atio = 1){ ; the 3th case

random a number between 0 and 1, call it gap

}

else if (sl,atio > 1){ ; the 4th case

random a number between 0 and 1/sl.atio, call it gap

}

else if (sl atio < 1){ ; the 5th case

random a number between 1-sl,.atzo, call it gap

}
dif = nfatti] - platti]

s[atti] = platti]+gap-dif

D’=DUs
}
}

return D’

15



Chapter 3

Study cases and Discussion

In this study, we investigate the concept, extract the technique and evaluate the
performance of the family of SMOTE algorithm, such as, SMOTE,Borderline-SMOTE

and Safe-Level SMOTE

3.1 SMOTE (Synthetic Minority Over-sampling Tech-
nique)

The SMOTE is a technique to increase the amount of synthetics data that is in
the minority of classes. The data was randomly selected from the original data or
reconstructed from existing examples. Therefore, we believe that the classification
model is of interest to the minority class. And the effect of class division will makes

the data more balanced.

16



Figure 3.1: SMOTE Operation Procedure

Fig.3.1(a) Displays the distribution of data. Fig.3.1(b) Selected point of the mi-
nority class and called A.In Fig.3.1(c) selected k nearest neighbor in the minority
to generate a synthetic instance, where k = 5. Fig.3.1(d) illustrates the generates
synthetic instance, where a red cross represents a synthetic instance. Fig.3.1(e) The

synthetics instance of SMOTE Technique.

From algorithm Choose a random number between 1 and £, call it nn.
Choose one of the k nearest neighbors of i
For 1 attribute

Compute: dif = Sample[nn][attr] - Sample|i]|attr]

17



Compute: gap = random number between 0 and 1

Syntheticlattr] = Sample[i[attr] + gap * dif

Example 3.1. Sample[i][attr] ; A, A = (4.42,5.47)

Sample[nn][attr] ; B, B = (4.52,6.66)
There fore ;  dif = 4.52 - 4.42 = 0.1 and dif = 6.66 - 5.47 = 1.19
gap = 0.5
So;  Syntheticlattr] = 4.42 + (0.5)(0.1) = 4.47 and
Synthetic[attr] = 5.47 + (0.5)(1.19) = 6.57

Thus ; Synthetic[attr] = (4.47,6.57)
The synthetic instances is generated until the number of synthetic instances is equal
to the setting a new point and continue to synthetic until the end. As shown in Fig.
3.1(e)

Advantages
SMOTE is a technique to increase the amount of data in a minority class to increase
the number and make the data more balanced.

Disadvantages
SMOTE generates the same number of synthetic data samples for each original minority
example and does so without consideration to neighboring examples, which increases
the occurrence of over-lapping between classes.

For this reason, an adaptive sampling method has been proposed to correct this
limitation. Borderline-SMOTE Show that the method of Borderline-SMOTE Give

better results than SMOTE.

18



3.2 Borderline-SMOTE

Borderline-SMOTE divided positive instances into three points; noise, borderline,

and safe in Fig.3.2 Borderline-SMOTE generate synthetic instance only borderline

point. borderline-SMOTE uses the same over-sampling technique as SMOTE but it

over-samples only the borderline instances of a minority class.

fz

-
18

Figure 3.3:

Borderline-SMOTE Operation Procedure

Fig.3.3(a) The original distribution of Circle data set. Fig.3.3(b). The border mi-

19



nority examples (solid squares). Fig.3.3(c) The borderline synthetic minority examples

(hollow squares).

From algorithm s ; integer between 1 and k, where £ is k- nearest neighbors
p’; randomly select from k-nearest neighbors
dif ; between p’ and s nearest neighbors
r ; select between 0 - 1

synthetic = p' + r x dif

Example 3.2 Point M (p')= (1.5,9.6)

Point N = (1.19,8.23)

dif =1.19-1.5=-0.3 and 8.23-9.6 =-1.37

r=0.5

synthetic = 1.5 4+ (0.5)(-0.3) = 1.35 and 9.6 + (0.5)(-1.37) = 8.92

Thus ; synthetic = (1.35,8.92)

Advantages
Borderline-SMOTE generates synthetic case only for those minority samples that are
"closer” to the border only, while SMOTE generates synthetic instances of all areas,
regardless of the overlap of the class.

Disadvantages
A classifier is more likely to mis-detect. Because synthetic is close to majority class,
while Safe-Level-SMOTE operates throughout a dataset and positions synthetic in-

stances close to a safe region. Therefore, the case will to less overlap.

20



3.3 Safe-Level-SMOTE

Safe-Level-SMOTE, Safe-Level-Synthetic Minority Oversampling TEchnique, as-
signs each positive instance its safe level before generating synthetic instances. Each
synthetic instance is positioned closer to the largest safe level so all synthetic instances

are generated only in safe regions.
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Figure 3.4: Safe-Level-SMOTE Operation Procedure

Fig.3.4(a) Displays the distribution of data. Fig.3.4(b) Selected point of the minor-
ity class and called P1. Fig.3.4(c) selected k nearest neighbor to generate a synthetic
instance, where k = 5, And select a point in minority class is nearest to P1 and is called

nl. Fig.3.4(d) illustrates the generates synthetic instance, where a red cross represents
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a synthetic instance. Fig.3.4(e) The synthetics instance of Safe-Level-SMOTE.

From algorithm for each positive instance p
compute k nearest neighbours for p
randomly select one from the k£ nearest neighbours, call it n
sl, = the number of positive stances in k nearest neighbours for p
sl, = the number of positive stances in k nearest neighbours for n
sl ratio = sl,/sl, ; sl ratio is safe level ratio.
For 1 attribute
if sl ratio = 1 random a number between 0 and 1, call it gap
if sl_ratio > 1 random a number between 0 and 1/sl_ratio, call it gap
if sl_ratio < 1 random a number between 1-sl_ratio and 1, call it gap
dif = nlatti] - platti]

slatti] = platti] + gap * dif , s is synthetic positive instances

Example 3.3 platti] = (1.98,7.2)

nlatti] = (1.19,8.23)

sl_ratio= 1/4 = 0.25 <1

if sl_ratio < 1 random a number between 1-sl ratio and 1, call it gap
gap =1-0.25 = 0.75 random a number between 0.75 and 1

select gap = 0.8

dif =1.19-198 =-0.79 and 8.23-72=1.03
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slatti] = 1.98 + (0.8)(-0.79) = 1.35 and 7.2 + (0.8)(1.03) = 8.02

Thus ; synthetic = (1.35,8.02)
The synthetic instances is generated until the number of synthetic instances is equal
to the setting a new point and continue to synthetic until the end. As shown in Fig.
3.4(e).

Advantages
Safe-Level-SMOTE carefully over-samples a dataset. Each synthetic instance is gen-
erated in safe position by considering the safe level ratio of instances. In contrast,
SMOTE and Borderline-SMOTE may generate synthetic instances in unsuitable loca-
tions, such as overlapping regions and noise regions.

Disadvantages
Safe-Level-SMOTE does not concentrate on dense regions with positive instances. So,

the classifier disregard this area.
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Chapter 4

Conclusion
Attributes Method
SMOTE | Borderline—-SMOTE Safe-Level-SMOTE

1. Configure k v v v
2. k nearest neighbor toke only mincrity 4
class
3. Divide the safe region into 3 levels v v
4. Calculate the 3 regions
5. Calculates 2 levels of space v
6. Calculates 1 levels of space v
7. Synthetic along the lines created v
8. Compute S = x; + gop - dif

S =Y, + gap - df v v v
9. gap = random number between [0, 1] v v v
10. Over-lapping v v v
11. Speed of creation algorithm (BigO) 0n?) omn?) 0(n?)

Figure 4.1: Comparative tables of SMOTE family such as SMOTE, Borderline-SMOTE

and Safe-Level-SMOTE.
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Figure 4.1 shows a comparison of the performance of SMOTE techniques, Borderline-
SMOTE techniques, Safe-Level-SMOTE techniques. We see that SMOTE techniques,
Borderline-SMOTE techniques, and Safe-Level-SMOTE techniques are defined the
nearest neighbor (k). and SMOTE techniques catch the minority class only. For
Borderline-SMOTE techniques and Safe-Level-SMOTE techniques are divide the safe
region into 3 levels and found no algorithms that computes 3 regions because we cut
out the regions called noise which Safe-Level-SMOTE techniques calculates 2 levels of
space that is very safe and less safe and Borderline- SMOTE techniques calculates 1
levels of space that is borderline region. The SMOTE techniques would be synthetic for
all £ but Borderline-SMOTE and Safe-Level-SMOTE are only synthetic for some lines.
The three methods have the same formula for calculating s, choose a gap with a random

number between [0,1], occur over-lapping and have the same speed that called “O(n?)”.

Data mining is a process that involves a lot of data. At present, data mining
has been applied in many types of work whether it be business, management, science
and medicine. How can data mining be applied to other areas?. We consider the
medical field, it is found the information of patients with various diseases. A lot is
also imbalanced information as well. Because of the number of patients, there may
be a greater number of people with the flu than the number of patients with allergies.
At present, we find a lot of imbalanced data. The number of data in one class is
less than the data in another class. There are several techniques that will help solve
this imbalanced data. One technique of data mining called Classification. Classification
techniques is a classification of information to use as a model to predict the information

we are interested. When we take this classified information into consideration. There
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are problems in classification. Because classifiers are more interested in the majority
class than the minority class, these minority class may be important that we cannot
ignore them and to solve this problem. We use the popular technique called SMOTE.
SMOTE uses over-sampling techniques to increase the number of minority class. But
also problems with this technique, which are overlapping problems. Later SMOTE
was developed as a technique. Borderline-SMOTE which is the technique used. Over-
sampling same with SMOTE and even Borderline-SMOTE try to solve the over-lapping
problem. But cannot solve this problem completely and when this technique was
studied, it was found. There are overlapping problems, but they are overlapping with
SMOTE techniques. Borderline-SMOTE that is Safe-level- SMOTE a technique was
developed to solve the same overlap problem. This technique has a very high level
of security in producing synthetic samples. We study this technique, it is safe-level-
SMOTE can solve the over-lapping problem. But it is not perfect,but the over-lapping

problem is considerably reduced compared to SMOTE and Borderline-SMOTE.
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Abstract

An approach to the construction of classifiers from imbalanced datasets is described.
A dataset is imbalanced if the classification categories are not approximately equally rep-
resented. Often real-world data sets are predominately composed of “normal” examples
with only a small percentage of “abnormal” or “interesting” examples. It is also the case
that the cost of misclassifying an abnormal (interesting) example as a normal example is
often much higher than the cost of the reverse error. Under-sampling of the majority (nor-
mal) class has been proposed as a good means of increasing the sensitivity of a classifier to
the minority class. This paper shows that a combination of our method of over-sampling
the minority (abnormal) class and under-sampling the majority (normal) class can achieve
better classifier performance (in ROC space) than only under-sampling the majority class.
This paper also shows that a combination of our method of over-sampling the minority class
and under-sampling the majority class can achieve better classifier performance (in ROC
space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method
of over-sampling the minority class involves creating synthetic minority class examples.
Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method
is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and
the ROC convex hull strategy.

1. Introduction

A dataset is imbalanced if the classes are not approximately equally represented. Imbalance
on the order of 100 to 1 is prevalent in fraud detection and imbalance of up to 100,000 to

(©2002 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.
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1 has been reported in other applications (Provost & Fawcett, 2001). There have been
attempts to deal with imbalanced datasets in domains such as fraudulent telephone calls
(Fawcett & Provost, 1996), telecommunications management (Ezawa, Singh, & Norton,
1996), text classification (Lewis & Catlett, 1994; Dumais, Platt, Heckerman, & Sahami,
1998; Mladenié¢ & Grobelnik, 1999; Lewis & Ringuette, 1994; Cohen, 1995a) and detection
of oil spills in satellite images (Kubat, Holte, & Matwin, 1998).

The performance of machine learning algorithms is typically evaluated using predictive
accuracy. However, this is not appropriate when the data is imbalanced and/or the costs of
different errors vary markedly. As an example, consider the classification of pixels in mam-
mogram images as possibly cancerous (Woods, Doss, Bowyer, Solka, Priebe, & Kegelmeyer,
1993). A typical mammography dataset might contain 98% normal pixels and 2% abnormal
pixels. A simple default strategy of guessing the majority class would give a predictive ac-
curacy of 98%. However, the nature of the application requires a fairly high rate of correct
detection in the minority class and allows for a small error rate in the majority class in
order to achieve this. Simple predictive accuracy is clearly not appropriate in such situ-
ations. The Receiver Operating Characteristic (ROC) curve is a standard technique for
summarizing classifier performance over a range of tradeoffs between true positive and false
positive error rates (Swets, 1988). The Area Under the Curve (AUC) is an accepted tradi-
tional performance metric for a ROC curve (Duda, Hart, & Stork, 2001; Bradley, 1997; Lee,
2000). The ROC convex hull can also be used as a robust method of identifying potentially
optimal classifiers (Provost & Fawcett, 2001). If a line passes through a point on the convex
hull, then there is no other line with the same slope passing through another point with a
larger true positive (TP) intercept. Thus, the classifier at that point is optimal under any
distribution assumptions in tandem with that slope.

The machine learning community has addressed the issue of class imbalance in two ways.
One is to assign distinct costs to training examples (Pazzani, Merz, Murphy, Ali, Hume, &
Brunk, 1994; Domingos, 1999). The other is to re-sample the original dataset, either by over-
sampling the minority class and/or under-sampling the majority class (Kubat & Matwin,
1997; Japkowicz, 2000; Lewis & Catlett, 1994; Ling & Li, 1998). Our approach (Chawla,
Bowyer, Hall, & Kegelmeyer, 2000) blends under-sampling of the majority class with a
special form of over-sampling the minority class. Experiments with various datasets and
the C4.5 decision tree classifier (Quinlan, 1992), Ripper (Cohen, 1995b), and a Naive Bayes
Classifier show that our approach improves over other previous re-sampling, modifying loss
ratio, and class priors approaches, using either the AUC or ROC convex hull.

Section 2 gives an overview of performance measures. Section 3 reviews the most
closely related work dealing with imbalanced datasets. Section 4 presents the details of
our approach. Section 5 presents experimental results comparing our approach to other
re-sampling approaches. Section 6 discusses the results and suggests directions for future
work.

2. Performance Measures

The performance of machine learning algorithms is typically evaluated by a confusion matrix
as illustrated in Figure 1 (for a 2 class problem). The columns are the Predicted class and the
rows are the Actual class. In the confusion matrix, TN is the number of negative examples
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Predicted Predicted
Negative Positive

Actu.al TN FP
Negative

AcFu_a] FN TP
Positive

Figure 1: Confusion Matrix

correctly classified (True Negatives), F'P is the number of negative examples incorrectly
classified as positive (False Positives), FN is the number of positive examples incorrectly
classified as negative (False Negatives) and T'P is the number of positive examples correctly
classified (True Positives).

Predictive accuracy is the performance measure generally associated with machine learn-
ing algorithms and is defined as Accuracy = (TP +TN)/(TP+ FP+ TN + FN). In the
context of balanced datasets and equal error costs, it is reasonable to use error rate as a
performance metric. Error rate is 1 — Accuracy. In the presence of imbalanced datasets
with unequal error costs, it is more appropriate to use the ROC curve or other similar
techniques (Ling & Li, 1998; Drummond & Holte, 2000; Provost & Fawcett, 2001; Bradley,
1997; Turney, 1996).

ROC curves can be thought of as representing the family of best decision boundaries for
relative costs of TP and FP. On an ROC curve the X-axis represents % FP = FP/(TN+FP)
and the Y-axis represents %17 P = TP/(TP+FN). The ideal point on the ROC curve would
be (0,100), that is all positive examples are classified correctly and no negative examples are
misclassified as positive. One way an ROC curve can be swept out is by manipulating the
balance of training samples for each class in the training set. Figure 2 shows an illustration.
The line y = x represents the scenario of randomly guessing the class. Area Under the ROC
Curve (AUC) is a useful metric for classifier performance as it is independent of the decision
criterion selected and prior probabilities. The AUC comparison can establish a dominance
relationship between classifiers. If the ROC curves are intersecting, the total AUC is an
average comparison between models (Lee, 2000). However, for some specific cost and class
distributions, the classifier having maximum AUC may in fact be suboptimal. Hence, we
also compute the ROC convex hulls, since the points lying on the ROC convex hull are
potentially optimal (Provost, Fawcett, & Kohavi, 1998; Provost & Fawcett, 2001).

3. Previous Work: Imbalanced datasets

Kubat and Matwin (1997) selectively under-sampled the majority class while keeping the
original population of the minority class. They have used the geometric mean as a perfor-
mance measure for the classifier, which can be related to a single point on the ROC curve.
The minority examples were divided into four categories: some noise overlapping the pos-
itive class decision region, borderline samples, redundant samples and safe samples. The
borderline examples were detected using the Tomek links concept (Tomek, 1976). Another
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- ROC (100, 100)
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- original data set

0
Percent False Positive 100

Figure 2: Nlustration of sweeping out a ROC curve through under-sampling. Increased
under-sampling of the majority (negative) class will move the performance from
the lower left point to the upper right.

related work proposed the SHRINK system that classifies an overlapping region of minor-
ity (positive) and majority (negative) classes as positive; it searches for the “best positive
region” (Kubat et al., 1998).

Japkowicz (2000) discussed the effect of imbalance in a dataset. She evaluated three
strategies: under-sampling, resampling and a recognition-based induction scheme. We focus
on her sampling approaches. She experimented on artificial 1D data in order to easily
measure and construct concept complexity. Two resampling methods were considered.
Random resampling consisted of resampling the smaller class at random until it consisted
of as many samples as the majority class and “focused resampling” consisted of resampling
only those minority examples that occurred on the boundary between the minority and
majority classes. Random under-sampling was considered, which involved under-sampling
the majority class samples at random until their numbers matched the number of minority
class samples; focused under-sampling involved under-sampling the majority class samples
lying further away. She noted that both the sampling approaches were effective, and she also
observed that using the sophisticated sampling techniques did not give any clear advantage
in the domain considered (Japkowicz, 2000).

One approach that is particularly relevant to our work is that of Ling and Li (1998).
They combined over-sampling of the minority class with under-sampling of the majority
class. They used lift analysis instead of accuracy to measure a classifier’s performance. They
proposed that the test examples be ranked by a confidence measure and then lift be used as
the evaluation criteria. A lift curve is similar to an ROC curve, but is more tailored for the
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marketing analysis problem (Ling & Li, 1998). In one experiment, they under-sampled the
majority class and noted that the best lift index is obtained when the classes are equally
represented (Ling & Li, 1998). In another experiment, they over-sampled the positive
(minority) examples with replacement to match the number of negative (majority) examples
to the number of positive examples. The over-sampling and under-sampling combination
did not provide significant improvement in the lift index. However, our approach to over-
sampling differs from theirs.

Solberg and Solberg (1996) considered the problem of imbalanced data sets in oil slick
classification from SAR imagery. They used over-sampling and under-sampling techniques
to improve the classification of oil slicks. Their training data had a distribution of 42 oil
slicks and 2,471 look-alikes, giving a prior probability of 0.98 for look-alikes. This imbalance
would lead the learner (without any appropriate loss functions or a methodology to modify
priors) to classify almost all look-alikes correctly at the expense of misclassifying many of
the oil slick samples (Solberg & Solberg, 1996). To overcome this imbalance problem, they
over-sampled (with replacement) 100 samples from the oil slick, and they randomly sampled
100 samples from the non oil slick class to create a new dataset with equal probabilities.
They learned a classifier tree on this balanced data set and achieved a 14% error rate on the
oil slicks in a leave-one-out method for error estimation; on the look alikes they achieved
an error rate of 4% (Solberg & Solberg, 1996).

Another approach that is similar to our work is that of Domingos (1999). He compares
the “metacost” approach to each of majority under-sampling and minority over-sampling.
He finds that metacost improves over either, and that under-sampling is preferable to mi-
nority over-sampling. FError-based classifiers are made cost-sensitive. The probability of
each class for each example is estimated, and the examples are relabeled optimally with
respect to the misclassification costs. The relabeling of the examples expands the decision
space as it creates new samples from which the classifier may learn (Domingos, 1999).

A feed-forward neural network trained on an imbalanced dataset may not learn to dis-
criminate enough between classes (DeRouin, Brown, Fausett, & Schneider, 1991). The
authors proposed that the learning rate of the neural network be adapted to the statistics
of class representation in the data. They calculated an attention factor from the proportion
of samples presented to the neural network for training. The learning rate of the network
elements was adjusted based on the attention factor. They experimented on an artificially
generated training set and on a real-world training set, both with multiple (more than two)
classes. They compared this to the approach of replicating the minority class samples to
balance the data set used for training. The classification accuracy on the minority class was
improved.

Lewis and Catlett (1994) examined heterogeneous uncertainty sampling for supervised
learning. This method is useful for training samples with uncertain classes. The training
samples are labeled incrementally in two phases and the uncertain instances are passed on
to the next phase. They modified C4.5 to include a loss ratio for determining the class
values at the leaves. The class values were determined by comparison with a probability
threshold of LR/(LR + 1), where LR is the loss ratio (Lewis & Catlett, 1994).

The information retrieval (IR) domain (Dumais et al., 1998; Mladenié¢ & Grobelnik,
1999; Lewis & Ringuette, 1994; Cohen, 1995a) also faces the problem of class imbalance
in the dataset. A document or web page is converted into a bag-of-words representation;
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that is, a feature vector reflecting occurrences of words in the page is constructed. Usually,
there are very few instances of the interesting category in text categorization. This over-
representation of the negative class in information retrieval problems can cause problems
in evaluating classifiers’ performances. Since error rate is not a good metric for skewed
datasets, the classification performance of algorithms in information retrieval is usually
measured by precision and recall:

n=_—1F
ret = TP+ FN

TP
precision = TP+FP

Mladenié and Grobelnik (1999) proposed a feature subset selection approach to deal
with imbalanced class distribution in the IR domain. They experimented with various
feature selection methods, and found that the odds ratio (van Rijsbergen, Harper, & Porter,
1981) when combined with a Naive Bayes classifier performs best in their domain. Odds
ratio is a probabilistic measure used to rank documents according to their relevance to the
positive class (minority class). Information gain for a word, on the other hand, does not
pay attention to a particular target class; it is computed per word for each class. In an
imbalanced text dataset (assuming 98 to 99% is the negative class), most of the features will
be associated with the negative class. Odds ratio incorporates the target class information in
its metric giving better results when compared to information gain for text categorization.

Provost and Fawcett (1997) introduced the ROC convex hull method to estimate the
classifier performance for imbalanced datasets. They note that the problems of unequal
class distribution and unequal error costs are related and that little work has been done to
address either problem (Provost & Fawcett, 2001). In the ROC convex hull method, the
ROC space is used to separate classification performance from the class and cost distribution
information.

To summarize the literature, under-sampling the majority class enables better classifiers
to be built than over-sampling the minority class. A combination of the two as done in
previous work does not lead to classifiers that outperform those built utilizing only under-
sampling. However, the over-sampling of the minority class has been done by sampling with
replacement from the original data. Our approach uses a different method of over-sampling.

4. SMOTE: Synthetic Minority Over-sampling TEchnique
4.1 Minority over-sampling with replacement

Previous research (Ling & Li, 1998; Japkowicz, 2000) has discussed over-sampling with
replacement and has noted that it doesn’t significantly improve minority class recognition.
We interpret the underlying effect in terms of decision regions in feature space. Essentially,
as the minority class is over-sampled by increasing amounts, the effect is to identify similar
but more specific regions in the feature space as the decision region for the minority class.
This effect for decision trees can be understood from the plots in Figure 3.
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Figure 3: a) Decision region in which the three minority class samples (shown by ’+’) reside
after building a decision tree. This decision region is indicated by the solid-line
rectangle. b) A zoomed-in view of the chosen minority class samples for the same
dataset. Small solid-line rectangles show the decision regions as a result of over-
sampling the minority class with replication. ¢) A zoomed-in view of the chosen
minority class samples for the same dataset. Dashed lines show the decision region
after over-sampling the minority class with synthetic generation.
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The data for the plot in Figure 3 was extracted from a Mammography dataset! (Woods
et al., 1993). The minority class samples are shown by + and the majority class samples
are shown by o in the plot. In Figure 3(a), the region indicated by the solid-line rectangle
is a majority class decision region. Nevertheless, it contains three minority class samples
shown by '+’ as false negatives. If we replicate the minority class, the decision region for the
minority class becomes very specific and will cause new splits in the decision tree. This will
lead to more terminal nodes (leaves) as the learning algorithm tries to learn more and more
specific regions of the minority class; in essence, overfitting. Replication of the minority
class does not cause its decision boundary to spread into the majority class region. Thus,
in Figure 3(b), the three samples previously in the majority class decision region now have
very specific decision regions.

4.2 SMOTE

‘We propose an over-sampling approach in which the minority class is over-sampled by cre-
ating “synthetic” examples rather than by over-sampling with replacement. This approach
is inspired by a technique that proved successful in handwritten character recognition (Ha
& Bunke, 1997). They created extra training data by performing certain operations on
real data. In their case, operations like rotation and skew were natural ways to perturb
the training data. We generate synthetic examples in a less application-specific manner, by
operating in “feature space” rather than “data space”. The minority class is over-sampled
by taking each minority class sample and introducing synthetic examples along the line
segments joining any/all of the k minority class nearest neighbors. Depending upon the
amount of over-sampling required, neighbors from the k nearest neighbors are randomly
chosen. Our implementation currently uses five nearest neighbors. For instance, if the
amount of over-sampling needed is 200%, only two neighbors from the five nearest neigh-
bors are chosen and one sample is generated in the direction of each. Synthetic samples
are generated in the following way: Take the difference between the feature vector (sample)
under consideration and its nearest neighbor. Multiply this difference by a random number
between 0 and 1, and add it to the feature vector under consideration. This causes the
selection of a random point along the line segment between two specific features. This
approach effectively forces the decision region of the minority class to become more general.

Algorithm SMOTE, on the next page, is the pseudo-code for SMOTE. Table 4.2 shows
an example of calculation of random synthetic samples. The amount of over-sampling
is a parameter of the system, and a series of ROC curves can be generated for different
populations and ROC analysis performed.

The synthetic examples cause the classifier to create larger and less specific decision
regions as shown by the dashed lines in Figure 3(c), rather than smaller and more specific
regions. More general regions are now learned for the minority class samples rather than
those being subsumed by the majority class samples around them. The effect is that de-
cision trees generalize better. Figures 4 and 5 compare the minority over-sampling with
replacement and SMOTE. The experiments were conducted on the mammography dataset.
There were 10923 examples in the majority class and 260 examples in the minority class
originally. We have approximately 9831 examples in the majority class and 233 examples

1. The data is available from the USF Intelligent Systems Lab, http://morden.csee.usf.edu/"chawla.
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in the minority class for the training set used in 10-fold cross-validation. The minority class
was over-sampled at 100%, 200%, 300%, 400% and 500% of its original size. The graphs
show that the tree sizes for minority over-sampling with replacement at higher degrees of
replication are much greater than those for SMOTE, and the minority class recognition of
the minority over-sampling with replacement technique at higher degrees of replication isn’t
as good as SMOTE.

Algorithm SMOTE(T, N, k)
Input: Number of minority class samples T'; Amount of SMOTE N%; Number of nearest
neighbors k
Output: (N/100) * T synthetic minority class samples
1. (x If N is less than 100%, randomize the minority class samples as only a random
percent of them will be SMOTEJ. *)
if N <100
then Randomize the T minority class samples
T = (N/100) « T
N =100
endif
N = (int)(N/100) (x The amount of SMOTE is assumed to be in integral multiples of
100. *)
k = Number of nearest neighbors
9. numattrs = Number of attributes
10. Sample[ ][ ]: array for original minority class samples
11. newindex: keeps a count of number of synthetic samples generated, initialized to 0
12. Synthetic[ |[ ]: array for synthetic samples
(* Compute k nearest neighbors for each minority class sample only. x)
13. fori—1toT

NN

o

14. Compute k nearest neighbors for 7, and save the indices in the nnarray
15. Populate(N, i, nnarray)
16. endfor

Populate(N, i, nnarray) (x Function to generate the synthetic samples. *)
17. while N #0

18. Choose a random number between 1 and k, call it nn. This step chooses one of
the k nearest neighbors of i.

19. for atir — 1 to numatirs

20. Compute: dif = Sample[nnarray[nn]|[attr] — Sample[i][attr]

21. Compute: gap = random number between 0 and 1

22. Syntheticlnewindex][attr] = Sampleli][attr] + gap * dif

23. endfor

24. newindex++

25. N=N-1

26. endwhile
27. return (x End of Populate. %)
End of Pseudo-Code.
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Consider a sample (6,4) and let (4,3) be its nearest neighbor.
(6,4) is the sample for which k-nearest neighbors are being identified.

(4,3) is one of its k-nearest neighbors.
Let:

fl.l=6 21=4 f21-f1.1=-2
fl2=4 22=3 f22-f12=-1
The new samples will be generated as
(f1,£2’) = (6,4) + rand(0-1) * (-2,-1)

rand(0-1) generates a random number between 0 and 1.

Table 1: Example of generation of synthetic examples (SMOTE).

Pruned decision tree size vs the degree of minority over-sampling
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Figure 4: Comparison of decision tree sizes for replicated over-sampling and SMOTE for

the Mammography dataset
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Figure 5: Comparison of % Minority correct for replicated over-sampling and SMOTE for
the Mammography dataset

4.3 Under-sampling and SMIOTE Combination

The majority class is under-sampled by randomly removing samples from the majority class
population until the minority class becomes some specified percentage of the majority class.
This forces the learner to experience varying degrees of under-sampling and at higher degrees
of under-sampling the minority class has a larger presence in the training set. In describing
our experiments, our terminology will be such that if we under-sample the majority class at
200%, it would mean that the modified dataset will contain twice as many elements from the
minority class as from the majority class; that is, if the minority class had 50 samples and
the majority class had 200 samples and we under-sample majority at 200%, the majority
class would end up having 25 samples. By applying a combination of under-sampling and
over-sampling, the initial bias of the learner towards the negative (majority) class is reversed
in the favor of the positive (minority) class. Classifiers are learned on the dataset perturbed
by “SMOTING” the minority class and under-sampling the majority class.

5. Experiments

We used three different machine learning algorithms for our experiments. Figure 6 provides
an overview of our experiments.

1. C4.5: We compared various combinations of SMOTE and under-sampling with plain
under-sampling using C4.5 release 8 (Quinlan, 1992) as the base classifier.
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SMOTE Loss-Ratio Modify costs of majority and minority
and Undersampling. || varied from 0.9 to 0.001. classes by changing priors.
C4.5 Ripper Naive Bayes

ROC’s generated for SMOTE, Undersampling
and Loss Ratio comparisons. Performance
evaluated with AUC and ROC convex hull.

ROC’s generated for comparison between
SMOTE and Under-sampling using C4.5, and
SMOTE using C4.5 and Naive bayes.
Performance evaluated with AUC and ROC convex hull.

Figure 6: Experiments Overview

2. Ripper: We compared various combinations of SMOTE and under-sampling with
plain under-sampling using Ripper (Cohen, 1995b) as the base classifier. We also
varied Ripper’s loss ratio (Cohen & Singer, 1996; Lewis & Catlett, 1994) from 0.9 to
0.001 (as a means of varying misclassification cost) and compared the effect of this
variation with the combination of SMOTE and under-sampling. By reducing the loss
ratio from 0.9 to 0.001 we were able to build a set of rules for the minority class.

3. Naive Bayes Classifier: The Naive Bayes Classifier? can be made cost-sensitive
by varying the priors of the minority class. We varied the priors of the minority
class from 1 to 50 times the majority class and compared with C4.5’s SMOTE and
under-sampling combination.

These different learning algorithms allowed SMOTE to be compared to some methods
that can handle misclassification costs directly. %FP and %TP were averaged over 10-fold
cross-validation runs for each of the data combinations. The minority class examples were
over-sampled by calculating the five nearest neighbors and generating synthetic examples.
The AUC was calculated using the trapezoidal rule. We extrapolated an extra point of TP
= 100% and FP = 100% for each ROC curve. We also computed the ROC convex hull
to identify the optimal classifiers, as the points lying on the hull are potentially optimal
classifiers (Provost & Fawcett, 2001).

2. The source code was downloaded from http://fuzzy.cs.uni-magdeburg.de/ borgelt/software.html.
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5.1 Datasets

We experimented on nine different datasets. These datasets are summarized in Table 5.2.
These datasets vary extensively in their size and class proportions, thus offering different
domains for SMOTE. In order of increasing imbalance they are:

1. The Pima Indian Diabetes (Blake & Merz, 1998) has 2 classes and 768 samples. The
data is used to identify the positive diabetes cases in a population near Phoenix,
Arizona. The number of positive class samples is only 268. Good sensitivity to
detection of diabetes cases will be a desirable attribute of the classifier.

2. The Phoneme dataset is from the ELENA project®. The aim of the dataset is to
distinguish between nasal (class 0) and oral sounds (class 1). There are 5 features.
The class distribution is 3,818 samples in class 0 and 1,586 samples in class 1.

3. The Adult dataset (Blake & Merz, 1998) has 48,842 samples with 11,687 samples
belonging to the minority class. This dataset has 6 continuous features and 8 nominal
features. SMOTE and SMOTE-NC (see Section 6.1) algorithms were evaluated on
this dataset. For SMOTE, we extracted the continuous features and generated a new
dataset with only continuous features.

4. The E-state data* (Hall, Mohney, & Kier, 1991) consists of electrotopological state
descriptors for a series of compounds from the National Cancer Institute’s Yeast Anti-
Cancer drug screen. E-state descriptors from the NCI Yeast AntiCancer Drug Screen
were generated by Tripos, Inc. Briefly, a series of about 60,000 compounds were
tested against a series of 6 yeast strains at a given concentration. The test was a
high-throughput screen at only one concentration so the results are subject to con-
tamination, etc. The growth inhibition of the yeast strain when exposed to the given
compound (with respect to growth of the yeast in a neutral solvent) was measured.
The activity classes are either active — at least one single yeast strain was inhibited
more than 70%, or inactive — no yeast strain was inhibited more than 70%. The
dataset has 53,220 samples with 6,351 samples of active compounds.

5. The Satimage dataset (Blake & Merz, 1998) has 6 classes originally. We chose the
smallest class as the minority class and collapsed the rest of the classes into one as
was done in (Provost et al., 1998). This gave us a skewed 2-class dataset, with 5809
majority class samples and 626 minority class samples.

6. The Forest Cover dataset is from the UCI repository (Blake & Merz, 1998). This
dataset has 7 classes and 581,012 samples. This dataset is for the prediction of forest
cover type based on cartographic variables. Since our system currently works for bi-
nary classes we extracted data for two classes from this dataset and ignored the rest.
Most other approaches only work for only two classes (Ling & Li, 1998; Japkowicz,
2000; Kubat & Matwin, 1997; Provost & Fawcett, 2001). The two classes we con-
sidered are Ponderosa Pine with 35,754 samples and Cottonwood /Willow with 2,747

3. ftp.dice.ucl.ac.be in the directory pub/neural-nets/ELENA /databases.
4. We would like to thank Steven Eschrich for providing the dataset and description to us.
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Dataset Majority Class | Minority Class
Pima 500 268
Phoneme 3818 1586
Adult 37155 11687
E-state 46869 6351
Satimage 5809 626
Forest Cover | 35754 2747
Oil 896 41
Mammography | 10923 260
Can 435512 8360

Table 2: Dataset distribution

samples. Nevertheless, the SMOTE technique can be applied to a multiple class prob-
lem as well by specifying what class to SMOTE for. However, in this paper, we have
focused on 2-classes problems, to explicitly represent positive and negative classes.

7. The Oil dataset was provided by Robert Holte and is used in their paper (Kubat et al.,
1998). This dataset has 41 oil slick samples and 896 non-oil slick samples.

8. The Mammography dataset (Woods et al., 1993) has 11,183 samples with 260 calci-
fications. If we look at predictive accuracy as a measure of goodness of the classifier
for this case, the default accuracy would be 97.68% when every sample is labeled non-
calcification. But, it is desirable for the classifier to predict most of the calcifications
correctly.

9. The Can dataset was generated from the Can Exodusll data using the AVATAR
(Chawla & Hall, 1999) version of the Mustafa Visualization tool®>. The portion of
the can being crushed was marked as “very interesting” and the rest of the can was
marked as “unknown.” A dataset of size 443,872 samples with 8,360 samples marked
as “very interesting” was generated.

5.2 ROC Creation

A ROC curve for SMOTE is produced by using C4.5 or Ripper to create a classifier for
each one of a series of modified training datasets. A given ROC curve is produced by first
over-sampling the minority class to a specified degree and then under-sampling the majority
class at increasing degrees to generate the successive points on the curve. The amount of
under-sampling is identical to plain under-sampling. So, each corresponding point on each
ROC curve for a dataset represents the same number of majority class samples. Different
ROC curves are produced by starting with different levels of minority over-sampling. ROC
curves were also generated by varying the loss ratio in Ripper from 0.9 to 0.001 and by
varying the priors of the minority class from the original distribution to up to 50 times the
majority class for a Naive Bayes Classifier.

5. The Mustafa visualization tool was developed by Mike Glass of Sandia National Labs.
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Phoneme ROC
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Figure 7: Phoneme. Comparison of SMOTE-C4.5, Under-C4.5, and Naive Bayes. SMOTE-
C4.5 dominates over Naive Bayes and Under-C4.5 in the ROC space. SMOTE-
C4.5 classifiers are potentially optimal classifiers.

Figures 9 through 23 show the experimental ROC curves obtained for the nine datasets
with the three classifiers. The ROC curve for plain under-sampling of the majority class
(Ling & Li, 1998; Japkowicz, 2000; Kubat & Matwin, 1997; Provost & Fawcett, 2001) is
compared with our approach of combining synthetic minority class over-sampling (SMOTE)
with majority class under-sampling. The plain under-sampling curve is labeled “Under”,
and the SMOTE and under-sampling combination ROC curve is labeled “SMOTE”. De-
pending on the size and relative imbalance of the dataset, one to five SMOTE and under-
sampling curves are created. We only show the best results from SMOTE combined with
under-sampling and the plain under-sampling curve in the graphs. The SMOTE ROC curve
from C4.5 is also compared with the ROC curve obtained from varying the priors of minority
class using a Naive Bayes classifier — labeled as “Naive Bayes”. “SMOTE”, “Under”, and
“Loss Ratio” ROC curves, generated using Ripper are also compared. For a given family
of ROC curves, an ROC convex hull (Provost & Fawcett, 2001) is generated. The ROC
convex hull is generated using the Graham’s algorithm (O’Rourke, 1998). For reference, we
show the ROC curve that would be obtained using minority over-sampling by replication
in Figure 19.

Each point on the ROC curve is the result of either a classifier (C4.5 or Ripper) learned
for a particular combination of under-sampling and SMOTE, a classifier (C4.5 or Ripper)
learned with plain under-sampling, or a classifier (Ripper) learned using some loss ratio or
a classifier (Naive Bayes) learned for a different prior for the minority class. Each point
represents the average (%TP and %FP) 10-fold cross-validation result. The lower leftmost
point for a given ROC curve is from the raw dataset, without any majority class under-

45



CHAwWLA, BOWYER, HALL & KEGELMEYER

Phoneme ROC with Ripper
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Figure 8: Phoneme. Comparison of SMOTE-Ripper, Under-Ripper, and modifying Loss
Ratio in Ripper. SMOTE-Ripper dominates over Under-Ripper and Loss Ratio
in the ROC space. More SMOTE-Ripper classifiers lie on the ROC convex hull.
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Figure 9: Pima Indians Diabetes. Comparison of SMOTE-C4.5, Under-C4.5, and Naive
Bayes. Naive Bayes dominates over SMOTE-C4.5 in the ROC space.
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Pima ROC with Ripper
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Figure 10: Pima Indians Diabetes. Comparison of SMOTE-Ripper, Under-Ripper, and
modifying Loss Ratio in Ripper. SMOTE-Ripper dominates over Under-Ripper
and Loss Ratio in the ROC space.

sampling or minority class over-sampling. The minority class was over-sampled at 50%,
100%, 200%, 300%, 400%, 500%. The majority class was under-sampled at 10%, 15%,
25%, 50%, 75%, 100%, 125%, 150%, 175%, 200%, 300%, 400%, 500%, 600%, 700%, 800%,
1000%, and 2000%. The amount of majority class under-sampling and minority class over-
sampling depended on the dataset size and class proportions. For instance, consider the
ROC curves in Figure 17 for the mammography dataset. There are three curves — one for
plain majority class under-sampling in which the range of under-sampling is varied between
5% and 2000% at different intervals, one for a combination of SMOTE and majority class
under-sampling, and one for Naive Bayes — and one ROC convex hull curve. The ROC
curve shown in Figure 17 is for the minority class over-sampled at 400%. Each point on
the SMOTE ROC curves represents a combination of (synthetic) over-sampling and under-
sampling, the amount of under-sampling follows the same range as for plain under-sampling.
For a better understanding of the ROC graphs, we have shown different sets of ROC curves
for one of our datasets in Appendix A.

For the Can dataset, we had to SMOTE to a lesser degree than for the other datasets
due to the structural nature of the dataset. For the Can dataset there is a structural
neighborhood already established in the mesh geometry, so SMOTE can lead to creating
neighbors which are under the surface (and hence not interesting), since we are looking at
the feature space of physics variables and not the structural information.

The ROC curves show a trend that as we increase the amount of under-sampling coupled
with over-sampling, our minority classification accuracy increases, of course at the expense
of more majority class errors. For almost all the ROC curves, the SMOTE approach dom-
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Satimage. Comparison of SMOTE-C4.5, Under-C4.5, and Naive Bayes. The
ROC curves of Naive Bayes and SMOTE-C4.5 show an overlap; however, at
higher TP’s more points from SMOTE-C4.5 lie on the ROC convex hull.
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Satimage. Comparison of SMOTE-Ripper, Under-Ripper, and modifying Loss

Ratio in Ripper. SMOTE-Ripper dominates the ROC space. The ROC convex
hull is mostly constructed with points from SMOTE-Ripper.
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Figure 13: Forest Cover. Comparison of SMOTE-C4.5, Under-C4.5, and Naive Bayes.
SMOTE-C4.5 and Under-C4.5 ROC curves are very close to each other. How-
ever, more points from the SMOTE-C4.5 ROC curve lie on the ROC convex
hull, thus establishing a dominance.

inates. Adhering to the definition of ROC convex hull, most of the potentially optimal
classifiers are the ones generated with SMOTE.

5.3 AUC Calculation

The Area Under the ROC curve (AUC) is calculated using a form of the trapezoid rule. The
lower leftmost point for a given ROC curve is a classifier’s performance on the raw data.
The upper rightmost point is always (100%, 100%). If the curve does not naturally end at
this point, the point is added. This is necessary in order for the AUC’s to be compared
over the same range of %FP.

The AUCs listed in Table 5.3 show that for all datasets the combined synthetic mi-
nority over-sampling and majority over-sampling is able to improve over plain majority
under-sampling with C4.5 as the base classifier. Thus, our SMOTE approach provides
an improvement in correct classification of data in the underrepresented class. The same
conclusion holds from an examination of the ROC convex hulls. Some of the entries are
missing in the table, as SMOTE was not applied at the same amounts to all datasets. The
amount of SMOTE was less for less skewed datasets. Also, we have not included AUC’s
for Ripper/Naive Bayes. The ROC convex hull identifies SMOTE classifiers to be poten-
tially optimal as compared to plain under-sampling or other treatments of misclassification
costs, generally. Exceptions are as follows: for the Pima dataset, Naive Bayes dominates
over SMOTE-CA4.5; for the Oil dataset, Under-Ripper dominates over SMOTE-Ripper. For
the Can dataset, SMOTE-classifier (classifier = C4.5 or Ripper) and Under-classifier ROC
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Figure 14: Forest Cover. Comparison of SMOTE-Ripper, Under-Ripper, and modifying
Loss Ratio in Ripper. SMOTE-Ripper shows a domination in the ROC space.
More points from SMOTE-Ripper curve lie on the ROC convex hull.
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Figure 15: Oil. Comparison of SMOTE-C4.5, Under-C4.5, and Naive Bayes. Although,
SMOTE-CA4.5 and Under-C4.5 ROC curves intersect at points, more points from
SMOTE-CA4.5 curve lie on the ROC convex hull.
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Figure 16: Oil. Comparison of SMOTE-Ripper, Under-Ripper, and modifying Loss Ratio
in Ripper. Under-Ripper and SMOTE-Ripper curves intersect, and more points
from the Under-Ripper curve lie on the ROC convex hull.
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Figure 17: Mammography. Comparison of SMOTE-C4.5, Under-C4.5, and Naive Bayes.
SMOTE-C4.5 and Under-C4.5 curves intersect in the ROC space; however, by
virtue of number of points on the ROC convex hull, SMOTE-C4.5 has more
potentially optimal classifiers.
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Mammography ROC with RIPPER
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Figure 18: Mammography. Comparison of SMOTE-Ripper, Under-Ripper, and modifying
Loss Ratio in Ripper. SMOTE-Ripper dominates the ROC space for TP > 75%.
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Figure 19: A comparison of over-sampling minority class examples by SMOTE and over-
sampling the minority class examples by replication for the Mammography

dataset.
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Figure 20: E-state. (a) Comparison of SMOTE-C4.5, Under-C4.5, and Naive Bayes.
SMOTE-C4.5 and Under-C4.5 curves intersect in the ROC space; however,
SMOTE-C4.5 has more potentially optimal classifiers, based on the number
of points on the ROC convex hull.
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Figure 21: E-state. Comparison of SMOTE-Ripper, Under-Ripper, and modifying Loss

Ratio in Ripper. SMOTE-Ripper has more potentially optimal classifiers, based
on the number of points on the ROC convex hull.
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Figure 22: Can. Comparison of SMOTE-C4.5, Under-C4.5, and Naive Bayes. SMOTE-
C4.5 and Under-C4.5 ROC curves overlap for most of the ROC space.

Can ROC with Ripper

100 T oo e = e -

80 / B
701 / T

60 / b

%TP
o
=]

T
N
!

J 50 SMOTE-Ripper
K4 % Loss Ratio

40re J ¥~ Under-Ripper
|
! O Hull

30H

20

¥
0 10 20 30 40 50 60 70 80 90 100
%FP

Figure 23: Can. Comparison of SMOTE-Ripper, Under-Ripper, and modifying Loss Ratio

in Ripper. SMOTE-Ripper and Under-Ripper ROC curves overlap for most of
the ROC space.
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Dataset Under | 50 100 200 300 400 500
SMOTE | SMOTE | SMOTE | SMOTE | SMOTE | SMOTE

Pima, 7242 7307

Phoneme 8622 8644 8661

Satimage 8900 8957 8979 8963 8975 8960

Forest Cover 9807 9832 9834 9849 9841 9842

Oil 8524 8523 8368 8161 8339 8537

Mammography | 9260 9250 9265 9311 9330 9304

E-state 6811 6792 6828 6784 6788 6779

Can 9535 9560 9505 9505 9494 9472 9470

Table 3: AUC’s [C4.5 as the base classifier] with the best highlighted in bold.

curves overlap in the ROC space. For all the other datasets, SMOTE-classifier has more
potentially optimal classifiers than any other approach.

5.4 Additional comparison to changing the decision thresholds

Provost (2000) suggested that simply changing the decision threshold should always be
considered as an alternative to more sophisticated approaches. In the case of C4.5, this
would mean changing the decision threshold at the leaves of the decision trees. For example,
a leaf could classify examples as the minority class even if more than 50% of the training
examples at the leaf represent the majority class. We experimented by setting the decision
thresholds at the leaves for the C4.5 decision tree learner at 0.5, 0.45, 0.42, 0.4, 0.35, 0.32,
0.3, 0.27, 0.25, 0.22, 0.2, 0.17, 0.15, 0.12, 0.1, 0.05, 0.0. We experimented on the Phoneme
dataset. Figure 24 shows the comparison of the SMOTE and under-sampling combination
against C4.5 learning by tuning the bias towards the minority class. The graph shows that
the SMOTE and under-sampling combination ROC curve is dominating over the entire
range of values.

5.5 Additional comparison to one-sided selection and SHRINK

For the oil dataset, we also followed a slightly different line of experiments to obtain results
comparable to (Kubat et al., 1998). To alleviate the problem of imbalanced datasets the
authors have proposed (a) one-sided selection for under-sampling the majority class (Kubat
& Matwin, 1997) and (b) the SHRINK system (Kubat et al., 1998). Table 5.5 contains the
results from (Kubat et al., 1998). Acc+ is the accuracy on positive (minority) examples and
Acc— is the accuracy on the negative (majority) examples. Figure 25 shows the trend for
Acc+ and Acc— for one combination of the SMOTE strategy and varying degrees of under-
sampling of the majority class. The Y-axis represents the accuracy and the X-axis represents
the percentage majority class under-sampled. The graphs indicate that in the band of
under-sampling between 50% and 125% the results are comparable to those achieved by
SHRINK and better than SHRINK in some cases. Table 5.5 summarizes the results for the
SMOTE at 500% and under-sampling combination. We also tried combinations of SMOTE
at 100-400% and varying degrees of under-sampling and achieved comparable results. The
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Phoneme: ROC comparison between SMOTE and C4.5 variation of decision thresholds
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Figure 24: SMOTE and Under-sampling combination against C4.5 learning by tuning the

bias towards the minority class
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Figure 25: SMOTE (500 OU) and Under-sampling combination performance

SHRINK approach and our SMOTE approach are not directly comparable, though, as they
see different data points. SMOTE offers no clear improvement over one-sided selection.
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Method Acc+ | Acc—
SHRINK 82.5% | 60.9%
One-sided selection || 76.0% | 86.6%

Table 4: Cross-validation results (Kubat et al., 1998)

Under-sampling % || Acc+ | Acc—
10% 64.7% | 94.2%
15% 62.8% | 91.3%
25% 64.0% | 89.1%
50% 89.5% | 78.9%
75% 83.7% | 73.0%
100% 78.3% | 68.7%
125% 84.2% | 68.1%
150% 83.3% | 57.8%
175% 85.0% | 57.8%
200% 81.7% | 56.7%
300% 89.0% | 55.0%
400% 95.5% | 44.2%
500% 98.0% | 35.5%
600% 98.0% | 40.0%
700% 96.0% | 32.8%
800% 90.7% | 33.3%

Table 5: Cross-validation results for SMOTE at 500% SMOTE on the Oil data set.
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6. Future Work

There are several topics to be considered further in this line of research. Automated adaptive
selection of the number of nearest neighbors would be valuable. Different strategies for
creating the synthetic neighbors may be able to improve the performance. Also, selecting
nearest neighbors with a focus on examples that are incorrectly classified may improve
performance. A minority class sample could possibly have a majority class sample as its
nearest neighbor rather than a minority class sample. This crowding will likely contribute
to the redrawing of the decision surfaces in favor of the minority class. In addition to
these topics, the following subsections discuss two possible extensions of SMOTE, and an
application of SMOTE to information retrieval.

6.1 SMOTE-NC

While our SMOTE approach currently does not handle data sets with all nominal features,
it was generalized to handle mixed datasets of continuous and nominal features. We call this
approach Synthetic Minority Over-sampling TEchnique-Nominal Continuous [SMOTE-NC].
We tested this approach on the Adult dataset from the UCI repository. The SMOTE-NC
algorithm is described below.

1. Median computation: Compute the median of standard deviations of all continuous
features for the minority class. If the nominal features differ between a sample and
its potential nearest neighbors, then this median is included in the Euclidean distance
computation. We use median to penalize the difference of nominal features by an
amount that is related to the typical difference in continuous feature values.

2. Nearest neighbor computation: Compute the Euclidean distance between the feature
vector for which k-nearest neighbors are being identified (minority class sample) and
the other feature vectors (minority class samples) using the continuous feature space.
For every differing nominal feature between the considered feature vector and its
potential nearest-neighbor, include the median of the standard deviations previously
computed, in the Euclidean distance computation. Table 2 demonstrates an example.

F1 =123 A B C [Let this be the sample for which we are computing nearest
neighbors]

F2=465ADE

F3=356ABK

So, Euclidean Distance between F2 and F1 would be:

Eucl = sqrt[(4-1)% + (6-2)2 + (5-3)2 + Med? + Med?|

Med is the median of the standard deviations of continuous features of the mi-
nority class.

The median term is included twice for feature numbers 5: B—D and 6: C—E,
which differ for the two feature vectors: F1 and F2.

Table 6: Example of nearest neighbor computation for SMOTE-NC.
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3. Populate the synthetic sample: The continuous features of the new synthetic minority
class sample are created using the same approach of SMOTE as described earlier. The
nominal feature is given the value occuring in the majority of the k-nearest neighbors.

The SMOTE-NC experiments reported here are set up the same as those with SMOTE,
except for the fact that we examine one dataset only. SMOTE-NC with the Adult dataset
differs from our typical result: it performs worse than plain under-sampling based on AUC,
as shown in Figures 26 and 27. We extracted only continuous features to separate the effect
of SMOTE and SMOTE-NC on this dataset, and to determine whether this oddity was
due to our handling of nominal features. As shown in Figure 28, even SMOTE with only
continuous features applied to the Adult dataset, does not achieve any better performance
than plain under-sampling. Some of the minority class continuous features have a very high
variance, so, the synthetic generation of minority class samples could be overlapping with
the majority class space, thus leading to more false positives than plain under-sampling.
This hypothesis is also supported by the decreased AUC measure as we SMOTE at degrees
greater than 50%. The higher degrees of SMOTE lead to more minority class samples in
the dataset, and thus a greater overlap with the majority class decision space.
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Figure 26: Adult. Comparison of SMOTE-C4.5, Under-C4.5, and Naive Bayes. SMOTE-
C4.5 and Under-C4.5 ROC curves overlap for most of the ROC space.

6.2 SMOTE-N

Potentially, SMOTE can also be extended for nominal features — SMOTE-N — with the
nearest neighbors computed using the modified version of Value Difference Metric (Stanfill
& Waltz, 1986) proposed by Cost and Salzberg (1993). The Value Difference Metric (VDM)
looks at the overlap of feature values over all feature vectors. A matrix defining the distance
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Adult ROC with Ripper
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Figure 27: Adult. Comparison of SMOTE-Ripper, Under-Ripper, and modifying Loss Ra-
tio in Ripper. SMOTE-Ripper and Under-Ripper ROC curves overlap for most
of the ROC space.
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Figure 28: Adult with only continuous features. The overlap of SMOTE-C4.5 and Under-
C4.5 is observed under this scenario as well.
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between corresponding feature values for all feature vectors is created. The distance §
between two corresponding feature values is defined as follows.

n k
Ciu Oy

=1

In the above equation, V; and V5 are the two corresponding feature values. Cj is the total
number of occurrences of feature value V;, and Cy; is the number of occurrences of feature
value V; for class 7. A similar convention can also be applied to Cy; and Cs. k is a constant,
usually set to 1. This equation is used to compute the matrix of value differences for each
nominal feature in the given set of feature vectors. Equation 1 gives a geometric distance
on a fixed, finite set of values (Cost & Salzberg, 1993). Cost and Salzberg’s modified VDM
omits the weight term w? included in the é computation by Stanfill and Waltz, which has
an effect of making ¢ symmetric. The distance A between two feature vectors is given by:

N
A(X> Y) = WzWy Z 5(5”1') yi)r (2)

=1

r = 1 yields the Manhattan distance, and r = 2 yields the Euclidean distance (Cost &
Salzberg, 1993). w, and wy are the exemplar weights in the modified VDM. wy = 1 for a
new example (feature vector), and w;, is the bias towards more reliable examples (feature
vectors) and is computed as the ratio of the number of uses of a feature vector to the number
of correct uses of the feature vector; thus, more accurate feature vectors will have w, =
1. For SMOTE-N we can ignore these weights in equation 2, as SMOTE-N is not used for
classification purposes directly. However, we can redefine these weights to give more weight
to the minority class feature vectors falling closer to the majority class feature vectors; thus,
making those minority class features appear further away from the feature vector under
consideration. Since, we are more interested in forming broader but accurate regions of the
minority class, the weights might be used to avoid populating along neighbors which fall
closer to the majority class. To generate new minority class feature vectors, we can create
new set feature values by taking the majority vote of the feature vector in consideration and
its k nearest neighbors. Table 6.2 shows an example of creating a synthetic feature vector.

Let F1 = A B C D E be the feature vector under consideration
and let its 2 nearest neighbors be

F2=AFCGN

F3=HBCDN

The application of SMOTE-N would create the following fea-
ture vector:

FS=ABCDN

Table 7: Example of SMOTE-N
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6.3 Application of SMOTE to Information Retrieval

We are investigating the application of SMOTE to information retrieval (IR). The IR prob-
lems come with a plethora of features and potentially many categories. SMOTE would have
to be applied in conjunction with a feature selection algorithm, after transforming the given
document or web page in a bag-of-words format.

An interesting comparison to SMOTE would be the combination of Naive Bayes and
Odds ratio. Odds ratio focuses on a target class, and ranks documents according to their
relevance to the target or positive class. SMOTE also focuses on a target class by creating
more examples of that class.

7. Summary

The results show that the SMOTE approach can improve the accuracy of classifiers for
a minority class. SMOTE provides a new approach to over-sampling. The combination
of SMOTE and under-sampling performs better than plain under-sampling. SMOTE was
tested on a variety of datasets, with varying degrees of imbalance and varying amounts of
data in the training set, thus providing a diverse testbed. The combination of SMOTE and
under-sampling also performs better, based on domination in the ROC space, than varying
loss ratios in Ripper or by varying the class priors in Naive Bayes Classifier: the methods
that could directly handle the skewed class distribution. SMOTE forces focused learning
and introduces a bias towards the minority class. Only for Pima — the least skewed dataset
— does the Naive Bayes Classifier perform better than SMOTE-C4.5. Also, only for the Oil
dataset does the Under-Ripper perform better than SMOTE-Ripper. For the Can dataset,
SMOTE-classifier and Under-classifier ROC curves overlap in the ROC space. For all the
rest of the datasets SMOTE-classifier performs better than Under-classifier, Loss Ratio,
and Naive Bayes. Out of a total of 48 experiments performed, SMOTE-classifier does not
perform the best only for 4 experiments.

The interpretation of why synthetic minority over-sampling improves performance where
as minority over-sampling with replacement does not is fairly straightforward. Consider
the effect on the decision regions in feature space when minority over-sampling is done
by replication (sampling with replacement) versus the introduction of synthetic examples.
With replication, the decision region that results in a classification decision for the minority
class can actually become smaller and more specific as the minority samples in the region are
replicated. This is the opposite of the desired effect. Our method of synthetic over-sampling
works to cause the classifier to build larger decision regions that contain nearby minority
class points. The same reasons may be applicable to why SMOTE performs better than
Ripper’s loss ratio and Naive Bayes; these methods, nonetheless, are still learning from
the information provided in the dataset, albeit with different cost information. SMOTE
provides more related minority class samples to learn from, thus allowing a learner to carve
broader decision regions, leading to more coverage of the minority class.
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Appendix A. ROC graphs for Oil Dataset

The following figures show different sets of ROC curves for the oil dataset. Figure 29 (a)
shows the ROC curves for the Oil dataset, as included in the main text; Figure 29(b) shows
the ROC curves without the ROC convex hull; Figure 29(c) shows the two convex hulls,
obtained with and without SMOTE. The ROC convex hull shown by dashed lines and stars
in Figure 29(c), was computed by including Under-C4.5 and Naive Bayes in the family of
ROC curves. The ROC convex hull shown by solid line and small circles in Figure 29(c) was
computed by including 500 SMOTE-C4.5, Under-C4.5, and Naive Bayes in the family of
ROC curves. The ROC convex hull with SMOTE dominates the ROC convex hull without
SMOTE, hence SMOTE-C4.5 contributes more optimal classifiers.
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Figure 29: ROC curves for the Oil Dataset. (a) ROC curves for SMOTE-C4.5, Under-
C4.5, Naive Bayes, and their ROC convex hull. (b) ROC curves for SMOTE-
C4.5, Under-C4.5, and Naive Bayes. (c) ROC convex hulls with and without
SMOTE.
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Abstract. In recent years, mining with imbalanced data sets receives more and
more attentions in both theoretical and practical aspects. This paper introduces
the importance of imbalanced data sets and their broad application domains in
data mining, and then summarizes the evaluation metrics and the existing meth-
ods to evaluate and solve the imbalance problem. Synthetic minority over-
sampling technique (SMOTE) is one of the over-sampling methods addressing
this problem. Based on SMOTE method, this paper presents two new minority
over-sampling methods, borderline-SMOTE1 and borderline-SMOTE2, in
which only the minority examples near the borderline are over-sampled. For the
minority class, experiments show that our approaches achieve better TP rate
and F-value than SMOTE and random over-sampling methods.

1 Introduction

There may be two kinds of imbalances in a data set. One is between-class imbalance,
in which case some classes have much more examples than others [1]. The other is
within-class imbalance, in which case some subsets of one class have much fewer
examples than other subsets of the same class [2]. By convention, in imbalanced data
sets, we call the classes having more examples the majority classes and the ones hav-
ing fewer examples the minority classes.

The problem of imbalance has got more and more emphasis in recent years. Imbal-
anced data sets exists in many real-world domains, such as spotting unreliable tele-
communication customers [3], detection of oil spills in satellite radar images [4],
learning word pronunciations [5], text classification [6], detection of fraudulent tele-
phone calls [7], information retrieval and filtering tasks [8], and so on. In these do-
mains, what we are really interested in is the minority class other than the majority
class. Thus, we need a fairly high prediction for the minority class. However, the
traditional data mining algorithms behaves undesirable in the instance of imbalanced
data sets, as the distribution of the data sets is not taken into consideration when these
algorithms are designed.

The structure of this paper is organized as follows. Section 2 gives a brief introduc-
tion to the recent developments in the domains of imbalanced data sets. Section 3

D.S. Huang, X.-P. Zhang, G.-B. Huang (Eds.): ICIC 2005, Part I, LNCS 3644, pp. 878 -R87 2005.
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describes our over-sampling methods on resolving the imbalanced problem. Section 4
presents the experiments and compares our methods with other over-sampling meth-
ods. Section 5 draws the conclusion.

2. The Recent Developments in Imbalanced Data Sets Learning

2.1 Evaluation Metrics in Imbalanced Domains

Most of the studies in imbalanced domains mainly concentrate on two-class problem
as multi-class problem can be simplified to two-class problem. By convention, the
class label of the minority class is positive, and the class label of the majority class is
negative. Table 1 illustrates a confusion matrix of a two-class problem. The first col-
umn of the table is the actual class label of the examples, and the first row presents
their predicted class label. TP and TN denote the number of positive and negative
examples that are classified correctly, while FN and FP denote the number of misclas-
sified positive and negative examples respectively.

Table 1. Confusion matrix for a two-class problem

Predicted Positive Predicted Negative

Positive TP FN

Negative FP TN
Accuracy = (TP+TN)/(TP+FN+FP+TN) (D)
FP rate = FP/(TN+FP) (2)
TP rate = Recall = TP/(TP+EN) 3)
Precision = TP/(TP+FP) 4)
F —value = (1+ B*)-Recall - Precision) /(#* - Re call + Precision) (5)

When used to evaluate the performance of a learner for imbalanced data sets, accu-
racy is generally apt to predict the majority class better and behaves poorly to the
minority class. We can come to this conclusion from its definition (formula (1)): if the
dataset is extremely imbalanced, even when the classifier classifies all the majority
examples correctly and misclassifies all the minority examples, the accuracy of the
learner is still high because there are much more majority examples than minority
examples. Under the circumstance, accuracy can not reflect reliable prediction for the
minority class. Thus, more reasonable evaluation metrics are needed.

ROC curve [9] is one of the popular metrics to evaluate the learners for imbalanced
data sets. It is a two-dimensional graph in which TP rate is plotted on the y-axis and
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FP rate is plotted on the x-axis. FP rate (formula (2)) denotes the percentage of the
misclassified negative examples, and TP rate (formula (3)) is the percentage of the
correctly classified positive examples. The point (0, 1) is the ideal point of the learn-
ers. ROC curve depicts relative trade-offs between benefits (TP rate) and costs (FP
rate). AUC (Area under ROC) can also be applied to evaluate the imbalanced data
sets [9]. Furthermore, F-value (formula (5)) is also a popular evaluation metric for
imbalance problem [10]. It is a kind of combination of recall (formula (3)) and preci-
sion (formula (4)), which are effective metrics for information retrieval community
where the imbalance problem exist. F-value is high when both recall and precision are
high, and can be adjusted through changing the value of #, where /3 corresponds to

relative importance of precision vs. recall and it is usually set to 1.
The above evaluation metrics can reasonably evaluate the learner for imbalanced
data sets because their formulae are relative to the minority class.

2.2 Methods for Dealing with Imbalanced Data Sets Learning

The solutions to imbalanced data sets can be divided into data and algorithmic levels.
categories. The methods at data level change the distribution of the imbalanced data
sets, and then the balanced data sets are provided to the learner to improve the detec-
tion rate of minority class. The methods at the algorithm level modify the existing
data mining algorithms or put forward new algorithms to resolve the imbalance
problem.

2.2.1 The Methods at Data Level

At the data level, different forms of re-sampling methods were proposed [1]. The
simplest re-sampling methods are random over-sampling and random under-sampling.
The former augments the minority class by exactly duplicating the examples of the
minority class, while the latter randomly takes away some examples of the majority
class. However, random over-sampling may make the decision regions of the learner
smaller and more specific, thus cause the learner to over-fit. Random under-sampling
can reduce some useful information of the data sets. Many improved re-sampling
methods are thus presented, such as heuristic re-sampling methods, combination of
over-sampling and under-sampling methods, embedding re-sampling methods into
data mining algorithms, and so on. Some of the improved re-sampling methods are as
follows.

Kubat et al. presented a heuristic under-sampling method which balanced the data
set through eliminating the noise and redundant examples of the majority class [11].
Nitesh et al. over-sampled the minority class through SMOTE (Synthetic Minority
Over-sampling Technique) method, which generated new synthetic examples along
the line between the minority examples and their selected nearest neighbors [12]. The
advantage of SMOTE is that it makes the decision regions larger and less specific.
Nitesh et al. integrated SMOTE into a standard boosting procedure, thus improved the
prediction of the minority class while not sacrificing the accuracy of the whole testing
set [13]. Gustavo et al. combined over-sampling and under-sampling methods to re-
solve the imbalanced problem [14]. Andrew Estabrooks et al. proposed a multiple re-
sampling method which selected the most appropriate re-sampling rate adaptively
[15]. Taeho Jo et al. put forward a cluster-based over-sampling method which dealt
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with between-class imbalance and within-class imbalance simultaneously [16].
Hongyu Guo et al. found out hard examples of the majority and minority classes dur-
ing the process of boosting, then generated new synthetic examples from hard exam-
ples and add them to the data sets [17].

2.2.2 The Methods at Algorithm Level

The methods at algorithm level operate on the algorithms other than the data sets. The
standard boosting algorithm, e.g. Adaboost [18], increases the weights of misclassi-
fied examples and decreases those correctly classified using the same proportion,
without considering the imbalance of the data sets. Thus, traditional boosting algo-
rithms do not perform well on the minority class. Aiming at the disadvantage above,
Mahesh V. Joshi et al. proposed an improved boosting algorithm which updated
weights of positive prediction (TP and FP) differently from weights of negative pre-
diction (TN and FN). The new algorithm can achieve better prediction for the minor-
ity class [19]. When dealing with imbalanced data sets, the class boundary learned by
Support Vector Machines (SVMs) is apt to skew toward the minority class, thus in-
crease the misclassified rate of the minority class. Gang Wu et al. proposed class-
boundary alignment algorithm which modify the class boundary through changing the
kernel function of SVMs [20]. Kaizhu Huang et al. presented Biased Minimax Prob-
ability Machine (BMPM) to resolve the imbalance problem. Given the reliable mean
and covariance matrices of the majority and minority classes, BMPM can derive the
decision hyperplane by adjusting the lower bound of the real accuracy of the testing
set [21]. Furthermore, there are other effective methods such as cost-based learning,
adjusting the probability of the learners and one-class learning, and so on [22] [23].

3 A New Over-Sampling Method: Borderline-SMOTE

In order to achieve better prediction, most of the classification algorithms attempt to
learn the borderline of each class as exactly as possible in the training process. The
examples on the borderline and the ones nearby (we call them borderline examples in
this paper) are more apt to be misclassified than the ones far from the borderline, and
thus more important for classification.

Based on the analysis above, those examples far from the borderline may contrib-
ute little to classification. We thus present two new minority over-sampling methods,
borderline-SMOTE]1 and borderline-SMOTE?2, in which only the borderline examples
of the minority class are over-sampled. Our methods are different from the existing
over-sampling methods in which all the minority examples or a random subset of the
minority class are over-sampled [1] [2] [12].

Our methods are based on SMOTE (Synthetic Minority Over-sampling Technique)
[12]. SMOTE generates synthetic minority examples to over-sample the minority
class. For every minority example, its k (which is set to 5 in SMOTE) nearest
neighbors of the same class are calculated, then some examples are randomly selected
from them according to the over-sampling rate. After that, new synthetic examples are
generated along the line between the minority example and its selected nearest
neighbors. Not like the existing over-sampling methods, our methods only over-
sample or strengthen the borderline minority examples. First, we find out the border-
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line minority examples; then, synthetic examples are generated from them and added
to the original training set. Suppose that the whole training set is 7, the minority class
is P and the majority class is N, and

P= {p17p2""’ppnum } ’ N = {nl’n2""’nnnum}

where pnum and nnum are the number of minority and majority examples. The de-
tailed procedure of borderline-SMOTEI is as follows.

Step 1. For every p; (i =1,2,..., pnum) in the minority class P, we calculate its m near-

est neighbors from the whole training set T. The number of majority examples among
the m nearest neighbors is denoted bym'(0 <m'<m).

Step 2. Ifm'=m, i.e. all the m nearest neighbors of p,are majority examples, p;is

considered to be noise and is not operated in the following steps. Ifm/2<m'<m,
namely the number of p, 's majority nearest neighbors is larger than the number of its

minority ones, p;is considered to be easily misclassified and put into a set DANGER.
If0<m'<m/2, p,is safe and needs not to participate in the follows steps.

Step 3. The examples in DANGER are the borderline data of the minority class P, and
we can see that DANGER c P . We set

DANGER ={p'\. D5 es D' gy }» 0 < dnum < pnum

For each example in DANGER, we calculate its k£ nearest neighbors from P .

Step 4. In this step, we generate sXxdnum synthetic positive examples from the data
in DANGER, where s is an integer between I and k . For each p'; , we randomly select

s nearest neighbors from its k nearest neighbors in P. Firstly, we calculate the differ-
ences, dif; (j=12,...,s) between p'; and its s nearest neighbors from P, then multi-

ply dif; by a random numberr; (j=12,....s) between 0 and 1, finally, s new syn-

thetic minority examples are generated between p'; and its nearest neighbors:
synthetic; = p';+r; xdif;,  j=12,...s

We repeat the above procedure for each p'; in DANGER and can at-

tain s X dnum synthetic examples. This step is similar with SMOTE, for more detail
see [12].
In the procedure above, p;,n;, p'; , dif ; and syniheric; are vectors. We can see that

new synthetic data are generated along the line between the minority borderline ex-
amples and their nearest neighbors of the same class, thus strengthened the borderline
examples.

Borderline-SMOTE?2 not only generates synthetic examples from each example
in DANGER and its positive nearest neighbors in P, but also does that from its nearest
negative neighbor in N. The difference between it and its nearest negative neighbor is
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multiplied a random number between 0 and 0.5, thus the new generated examples are
closer to the minority class.

Our methods can be easily understood with the following simulated data set, Cir-
cle, which has two classes. Fig. 1 (a) shows the original distribution of the data set,
the circle points represent majority examples and the plus signs are minority exam-
ples. Firstly, we apply borderline-SMOTE to find out the borderline examples of the
minority class, which are denoted by solid squares in Fig. 1 (b). Then, new synthetic
examples are generated through those borderline examples of the minority class. The
synthetic examples are shown in Fig. 1 (c) with hollow squares. It is easy to find out
from the figures that, different from SMOTE, our methods only over-sample or
strengthen the borderline and its nearby points of the minority class.

Fig. 1. (a) The original distribution of Circle data set. (b) The borderline minority examples
(solid squares). (c) The borderline synthetic minority examples (hollow squares).

4 Experiments

We use TP rate and F-value for the minority class to evaluate the results of our ex-
periments. TP rate denotes the accuracy of the minority class. And the value of £ in
F-value is set to 1 in this paper.

The four data sets used in our experiments are shown in Table 2. Among the four
data sets, Circle is our simulated data set depicted in Fig. 1, and the others are from
UCT [24]. All the attributes in the data sets are quantitative. For Satimage, we choose
class label “4” as the minority class and regard the remainders as the majority class,
as we only study two-class problem in this paper.

Table 2. The description of the data sets

The name number of number of Class label Percentage of

of Data set Examples Attributes (minority : majority) minority class
Circle(Simulation) 1600 2 1:0 6.25%
Pima(UCI) 768 8 1:0 34.77%
Satimage(UCI) 6435 36 4:remainder 9.73%

Haberman(UCI) 306 4 Die : Survive 26.47%
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In our experiments, four over-sampling methods are applied to the data sets:
SMOTE, random over-sampling and our methods, borderline-SMOTEI and border-
line-SMOTE2, among which random over-sampling method augments the minority
class by exactly duplicating the positive examples partly or completely [1]. Through
increasing the number of examples in the minority class, over-sampling methods can
balance the distribution of the data sets and improve the detection rate of the minority
class.

In order to compare the results conveniently, the value of m in our methods is set in
a way that, the number of the minority examples in DANGER is about half of the
minority class. The value of k is set to 5 like SMOTE. For each method, the TP rates
and F-values are attained through 10-fold cross-validation. In order to decrease the
randomness in SMOTE and our methods, the TP rates and F-values for these methods
are the average results of three independent 10-fold cross-validation experiments.
After the original training sets are over-sampled with the methods above, C4.5 is
applied as the validation classifier [25].

Since the nature of imbalance problem is to improve the prediction performance of
the minority class, we only present the results of the minority class. We compare the
results of the data sets through TP rate and F-value of the minority class. TP rate re-
flects the performance of the learner on the minority class of the testing set, while F-
value shows the performance of the learner on the whole testing set.

Fig. 2 shows our experimental results. In the figure, (a), (b), (c) and (d) depict the
F-value and TP rate for the minority class when the four over-sampling methods are
applied on Circle, Pima, Satimage and Haberman respectively. The x-axis in each
figure is the number of the new synthetic examples. The F-value and TP rate of the
original data sets with C4.5 are also shown in the figures.

The results illustrated in Fig. 2 reveal the following results. First of all, all the four
over-sampling methods improve TP rate of the minority class. For Circle, Pima and
Haberman, the TP rates of our methods are better than SMOTE and random over-
sampling. Comparing with the original data sets, the best improvements of TP rate
for borderline-SMOTEI and borderline-SMOTE2 on Circle are 20 and 22 per cent,
21.3 and 20.5 per cent on Pima, 10.1 and 10.0 per cent on Satimage, and both 45.2
per cent on Haberman. For Satimage, the TP rates of our methods are lager than that
of random over-sampling, and are comparable with SMOTE. Secondly, the F-value
of borderline-SMOTEI is generally better than SMOTE and random over-sampling,
and the F-value of borderline-SMOTE?2 is also comparable with others. Comparing
with the original data sets, the best improvements of F-value for borderline-
SMOTETI and borderline-SMOTE2 on Circle are 12.1 and 10.3 per cent, 2.3 and 1.3
per cent on Pima, 2.3 and 1.4 per cent on Satimage, and 24.7 and 23.0 per cent on
Haberman.

As a whole, border-SMOTEI behaves excellent on both TP rate and F-value, and
borderline-SMOTE2 behaves super on TP rate because it generates synthetic exam-
ples from both the minority borderline examples and their nearest neighbors of the
majority class, however, the procedure causes overlap between the two classes, thus
decreases its F-value to some extent.
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Fig. 2. (a), (b), (c) and (d) illustrate the F-value and TP rate for minority class when proposed
over-sampling methods are applied on Circle, Pima, Satimge and Haberman respectively with
C4.5. “borsmotel” and “borsmote2” denote borderline-SMOTE1 and borderline-SMOTE2,
“random” denotes random over-sampling, and “original” denotes the values of the original data
sets. The x-axis is the number of synthetic examples

5 Conclusion

In recent years, learning with imbalanced data sets receives more and more attentions
in both theoretical and practical aspects. However, traditional data mining methods
are not satisfactory. Aiming to solve the problem, two new synthetic minority over-
sampling methods, borderline-SMOTEI and borderline-SMOTE?2 are presented in
this paper. We compared the TP rate and F-value of our methods with SMOTE, ran-
dom over-sampling and the original C4.5 for four data sets.
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The borderline examples of the minority class are more easily misclassified than
those ones far from the borderline. Thus our methods only over-sample the borderline
examples of the minority class, while SMOTE and random over-sampling augment
the minority class through all the examples from the minority class or a random sub-
set of the minority class. Experiments indicate that our methods behave better, which
validates the efficiency of our methods.

There are several topics left to be considered further in this line of research. Differ-
ent strategies to define the DANGER examples, and automated adaptive determination
of the number of examples in DANGER would be valuable. The combination of our
methods with under-sampling methods and the integration of our methods to some
data mining algorithms, are also worth trying.
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Abstract. The class imbalanced problem occurs in various disciplines when one
of target classes has a tiny number of instances comparing to other classes. A
typical classifier normally ignores or neglects to detect a minority class due to
the small number of class instances. SMOTE is one of over-sampling
techniques that remedies this situation. It generates minority instances within
the overlapping regions. However, SMOTE randomly synthesizes the minority
instances along a line joining a minority instance and its selected nearest
neighbours, ignoring nearby majority instances. Our technique called Safe-
Level-SMOTE carefully samples minority instances along the same line with
different weight degree, called safe level. The safe level computes by using
nearest neighbour minority instances. By synthesizing the minority instances
more around larger safe level, we achieve a better accuracy performance than
SMOTE and Borderline-SMOTE.

Keywords: Class Imbalanced Problem, Over-sampling, SMOTE, Safe Level.

1 Introduction

A dataset is considered to be imbalanced if one of target classes has a tiny number of
instances comparing to other classes. In this paper, we consider only two-class case
[5]1, [17]. The title of a smaller class is a minority class, and that of a bigger class is a
majority class. The minority class includes a few positive instances, and the majority
class includes a lot of negative instances.

In many real-world domains, analysts encounter many class imbalanced problems,
such as the detection of unknown and known network intrusions [8], and the detection
of oil spills in satellite radar images [13]. In these domains, standard classifiers need
to accurately predict a minority class, which is important and rare, but the usual clas-
sifiers seldom predict this minority class.

Strategies for dealing with the class imbalanced problem can be grouped into two
categories. One is to re-sample an original dataset [11], [14], [15], either by over-
sampling a minority class or under-sampling a majority class until two classes are
nearly balanced. The second is to use cost sensitive learning by assigning distinct
costs to correctly classified instances or classifications errors [7], [9], [16].

T. Theeramunkong et al. (Eds.): PAKDD 2009, LNAI 5476, pp. 475-482, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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Table 1. A confusion matrix for a two-class imbalanced problem

Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

The performance of classifiers is customarily evaluated by a confusion matrix as
illustrated in Table 1. The rows of the table are the actual class label of an instance,
and the columns of the table are the predicted class label of an instance. Typically, the
class label of a minority class set as positive, and that of a majority class set as nega-
tive. TP, FN, FP, and TN are True Positive, False Negative, False Positive, and True
Negative, respectively. From Table 1, the six performance measures on classification;
accuracy, precision, recall, F-value, TP rate, and FP rate, are defined by formulae in

(D-(6).

Accuracy =(TP+TN)/ (TP +FN + FP + TN) . (D)

Recall = TP/ (TP + FN) . 2)

Precision = TP / (TP + FP) . 3)

F-value = ((1 + B)*Recall-Precision) / (B*Recall + Precision) . 4)
TP Rate =TP /(TP + FN) . 5)

FP Rate =FP /(TN + FP) . (6)

The objective of a classifier needs to aim for high prediction performance on a mi-
nority class. Considering the definition of accuracy, if most instances in a minority
class are misclassified and most instances in a majority class are correctly classified
by a classifier, the accuracy is still high because the large number of negative in-
stances influences the whole classification result on accuracy. Note that precision and
recall are effective for this problem because they evaluate the classification rates
by concentrating in a minority class. In addition, F-value [3] integrating recall and
precision, is used instead of recall and precision. Its value is large when both recall
and precision are large. The B parameter corresponding to relative importance of
precision and recall is usually set to 1. Furthermore, ROC curve, The Receiver
Operating Characteristic curve, is a standard technique for summarizing classifier
performance over a range of tradeoffs between TP rate, benefits, and FP rate, costs.
Moreover, AUC [2], Area under ROC, can also be applied to evaluate the perform-
ance of a classifier.

The content of this paper is organized as follows. Section 2 briefly describes re-
lated works for handling the class imbalanced problem. Section 3 describes the details
of our over-sampling technique, Safe-Level-SMOTE. Section 4 shows the experimen-
tal results by comparing Safe-Level-SMOTE to SMOTE and Borderline-SMOTE.
Section 5 summarizes the paper and points out our future works.
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2 Related Works

Re-sampling is a preprocessing technique which adjusting the distribution of an im-
balanced dataset until it is nearly balanced, before feeding it into any classifiers. The
simplest re-sampling techniques are a random over-sampling technique [14] and a
random under-sampling technique [14]. The former randomly duplicates positive
instances into a minority class, while the latter randomly removes negative instances
from a majority class. Both techniques are sampling the dataset until the classes are
approximately equally represented. However, the random over-sampling technique
may cause the overfitting problem [19] because the technique may create the decision
regions smaller and more specific. The random under-sampling technique encounters
the problem that diminishing some important information of a dataset. For handling
these problems, improved re-sampling techniques were studied and are described as
follows.

Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W. (2002) designed the State of the
Art over-sampling technique, namely SMOTE, Synthetic Minority Over-sampling
TEchnique [4]. It over-samples a minority class by taking each positive instance and
generating synthetic instances along a line segments joining their k nearest neighbours
in the minority class. This causes the selection of a random instance along the line
segment between two specific features. The synthetic instances cause a classifier to
create larger and less specific decision regions, rather than smaller and more specific
regions. More general regions are now learned for positive instances, rather than those
being subsumed by negative instances around them. The effect is that decision trees
generalize better. However, SMOTE encounters the overgeneralization problem. It
blindly generalizes the region of a minority class without considering a majority class.
This strategy is particularly problematic in the case of highly skewed class distribu-
tions since, in such cases, a minority class is very sparse with respect to a majority
class, thus resulting in a greater chance of class mixture.

Han, H., Wang, W., Mao, B. (2005) designed the improvement of SMOTE, namely
Borderline-SMOTE [10]. The authors divided positive instances into three regions;
noise, borderline, and safe, by considering the number of negative instances on k
nearest neighbours. Let n be the number of negative instances among the & nearest
neighbours. The three regions are defined by the definitions in Table 2. Borderline-
SMOTE uses the same over-sampling technique as SMOTE but it over-samples only
the borderline instances of a minority class instead of over-sampling all instances of
the class like SMOTE does. Unfortunately, considering two positive instances those n
values are equal to k£ and k-1 for the first and second instances consecutively. These
instances are not obviously difference but they are divided into the different regions;
noise and borderline. The first instance is declined but the second instance is selected
for over-sampling.

Table 2. The definitions of noise, borderline, and safe regions in Borderline-SMOTE

Region Definition
Noise n==k
Borderline Wk<n<k

Safe 0<n<Vok
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3 Safe-Level-SMOTE

Based on SMOTE, Safe-Level-SMOTE, Safe-Level-Synthetic Minority Over-
sampling TEchnique, assigns each positive instance its safe level before generating
synthetic instances. Each synthetic instance is positioned closer to the largest safe
level so all synthetic instances are generated only in safe regions.

The safe level (s]) is defined as formula (7). If the safe level of an instance is close
to 0, the instance is nearly noise. If it is close to %, the instance is considered safe. The
safe level ratio is defined as formula (8). It is used for selecting the safe positions to
generate synthetic instances.

safe level (sI) = the number of a positive stances in k nearest neighbours . (7

safe level ratio = s/ of a positive instance / s/ of a nearest neighbours . (8)

Safe-Level-SMOTE algorithm is showed in Fig. 1. All variables in this algorithm
are described as follows. p is an instance in the set of all original positive instances D.
n is a selected nearest neighbours of p. s included in the set of all synthetic positive
instances D' is a synthetic instance. s/, and s, are safe level of p and safe level of n
respectively. si_ratio is safe level ratio. numattrs is the number of attributes. dif is the
difference between the values of n and p at the same attribute id. gap is a random
fraction of dif. p[i], n[i], and s[i] are the numeric values of the instances at i attribute.
P, n, and s are vectors. sl,, sl,, sl_ratio, numattrs, dif, and gap are scalars.

After assigning the safe level to p and the safe level to n, the algorithm calculates
the safe level ratio. There are five cases corresponding to the value of safe level ratio
showed in the lines 12 to 28 of Fig. 1.

The first case showed in the lines 12 to 14 of Fig. 1. The safe level ratio is equal to
oo and the safe level of p is equal to 0. It means that both p and n are noises. If this
case occurs, synthetic instance will not be generated because the algorithm does not
want to emphasize the important of noise regions.

The second case showed in the lines 17 to 19 of Fig. 1. The safe level ratio is equal
to oo and the safe level of p is not equal to 0. It means that » is noise. If this case oc-
curs, a synthetic instance will be generated far from noise instance n by duplicating p
because the algorithm want to avoid the noise instance n.

The third case showed in the lines 20 to 22 of Fig. 1. The safe level ratio is equal to
1. It means that the safe level of p and n are the same. If this case occurs, a synthetic
instance will be generated along the line between p and »n because p is as safe as n.

The fourth case showed in the lines 23 to 25 of Fig. 1. The safe level ratio is
greater than 1. It means that the safe level of p is greater than that of n. If this case
occurs, a synthetic instance is positioned closer to p because p is safer than n. The
synthetic instance will be generated in the range [0, 1/ safe level ratio].

The fifth case showed in the lines 26 to 28 of Fig. 1. The safe level ratio is less
than 1. It means that the safe level of p is less than that of n. If this case occurs, a
synthetic instance is positioned closer to » because n is safer than p. The synthetic
instance will be generated in the range [1 - safe level ratio, 1].
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After each iteration of for loop in line 2 finishes, if the first case does not occurs, a
synthetic instance s will be generated along the specific-ranged line between p and n,
and then s will be added to D'

After the algorithm terminates, it returns a set of all synthetic instances D', The al-
gorithm generates |1DI - ¢ synthetic instances where |DI is the number of all positive
instances in D, and ¢ is the number of instances that satisfy the first case.

Algorithm: Safe-Level-SMOTE
Input: a set of all original positive instances D
Output: a set of all synthetic positive instances D'

1. D'=0

2. for each positive instance p in D {

3. compute k nearest neighbours for p in D and

randomly select one from the k nearest neighbours, call it n

4.  sl, = the number of positive stances in k nearest neighbours for p in D
5. sl, = the number of positive stances in k nearest neighbours for n in D
6. if(sl,20) { ;slis safe level.
7 sl_ratio = sl, / sl,, ; sI_ratio is safe level ratio.
8
9

}
else {
10. sl_ratio = oo
11. }
12.  if (sl_ratio = 0 AND sl,=0) { ; the I” case
13. does not generate positive synthetic instance
14. }
15. else {
16. for (atti = 1 to numattrs) { ; numattrs is the number of attributes.
17. if (sl_ratio = oo AND sl, # 0) { ; the 2™ case
18. gap=0
19. }
20. else if (sl_ratio=1) { ; the 3™ case
21. random a number between 0 and 1, call it gap
22, }
23, else if (sl_ratio > 1) { ; the 4" case
24. random a number between 0 and 1/sl_ratio, call it gap
25. }
26. else if (sl_ratio < 1) { ; the 5™ case
27. random a number between 1-sl_ratio and 1, call it gap
28. }
29, dif = n[atti] - p[atti]
30. s[atti] = p[atti] + gap-dif
31, }
32. D'=D'u {s}
33. }
34, }
35. return D'

Fig. 1. Safe-Level-SMOTE algorithm
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4 Experiments

In our experiments, we use four performance measures; precision, recall, F-value,
and AUC, for evaluating the performance of three over-sampling techniques; Safe-
Level-SMOTE, SMOTE, and Borderline-SMOTE. The value of £in F-value is set to
1 and the value of k& in all over-sampling techniques are set to 5. The performance
measures are evaluated through 10-fold cross-validation. Three classifiers; decision
trees C4.5 [18], Naive Bayes [12], and support vector machines (SVMs) [6], are ap-
plied as classifiers in the experiments. We use two quantitative datasets from UCI
Repository of Machine Learning Databases [1]; Satimage and Haberman, illustrated
in Table 3. The first to last column of the table represents the dataset name, the num-
ber of instances, the number of attributes, the number of positive instances, the num-
ber of negative instances, and the percent of a minority class, respectively.

The experimental results on the two datasets are illustrated in Fig. 2. The x-axis in
these figures represents the over-sampling percent on a minority class. The y-axis in
these figures represents the four performance measures; precision, recall, F-value,
and AUC, in order from Fig. 2 (a) to Fig. 2 (d). In these figures, ORG, SMOTE,
BORD, and SAFE are the label of the original dataset, SMOTE, Borderline-SMOTE,
and Safe-Level-SMOTE, respectively.

For Satimage dataset, we select the class label 4 as the minority class and merge
the remainder classes as the majority class because we only study the two-class im-
balanced problem. The results on F-value using decision trees C4.5 are illustrated in
Fig. 2 (c). It is apparent that F-value is improved when over-sampling percent on the
minority class is increased. Moreover, Safe-Level-SMOTE achieved higher F-value
than SMOTE and Borderline-SMOTE. The results on recall using Naive Bayes are
illustrated in Fig. 2 (b). Analyzing the figure, Borderline-SMOTE gains the higher
performance on recall, while Safe-Level-SMOTE comes second.

For Haberman dataset, the minority class is about one quarter of the whole dataset.
The results on precision using decision trees C4.5 are illustrated in Fig. 2 (a). The
performance of Safe-Level-SMOTE is the best performance on precision. The results
on AUC using SVMs are illustrated in Fig. 2 (d). Analyzing the figure, Safe-Level-
SMOTE and SMOTE show similar performance on AUC. In addition, Borderline-
SMOTE shows poor performance on higher percent.

For all experimental results, Safe-Level-SMOTE obviously achieve higher per-
formance on precision and F-value than SMOTE and Borderline-SMOTE when deci-
sion trees C4.5 are applied as classifiers. Borderline-SMOTE only achieve a better
performance on recall when Naive Bayes are applied as classifiers since the inde-
pendent assumption on the borderline region is valid. Moreover, the SVMs show no
improvement in all over-sampling techniques. Theses causes by the convex regions of
all over-sampling techniques are similar. Therefore, the results of hyperplanes in
SVMs are indistinguishable.

Table 3. The descriptions of UCI datasets in the experiments

Name Instance Attribute Positive Negative % Minority
Satimage 6,435 37 626 5,809 9.73
Haberman 306 4 81 225 26.47
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Fig. 2. The experimental results; (a) Precision evaluated by applying C4.5 with Haberman,
(b) Recall evaluated by applying Naive Bayes with Satimage, (c¢) F-value evaluated by
applying C4.5 with Satimage, (d) AUC evaluated by applying SVMs with Haberman

5 Conclusion

The class imbalanced problem has got more attentions among data miners. There are
many techniques for handling such problem. However, traditional data mining tech-
niques are still unsatisfactory. We present an efficient technique called Safe-Level-
SMOTE to handle this class imbalanced problem.

The experiments show that the performance of Safe-Level-SMOTE evaluated by
precision and F-value are better than that of SMOTE and Borderline-SMOTE when
decision trees C4.5 are applied as classifiers. This comes from the fact that Safe-
Level-SMOTE carefully over-samples a dataset. Each synthetic instance is generated
in safe position by considering the safe level ratio of instances. In contrast, SMOTE
and Borderline-SMOTE may generate synthetic instances in unsuitable locations,
such as overlapping regions and noise regions. We can conclude that synthetic in-
stances generated in safe positions can improve prediction performance of classifiers
on the minority class.

Although the experimental results have provided evidence that Safe-Level- SMOTE
can be successful classified numeric datasets in the class imbalanced problem, there are
several future works left to be studied in this line of research. First, different definitions
to assign safe level would be valuable. Second, additional methods to classify datasets
which have nominal attributes are useful. Third, automatic determination of the amount
of synthetic instances generated by Safe-Level-SMOTE should be addressed.
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