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CHAPTER I 

Introduction 

1. Introduction 

             Let   be a real Hilbert space,   be a nonempty closed convex subset of   and 

let       be a real-valued function,           be an equilibrium bifunction, 

that is,  (   )    for each       

             We consider the following mixed equilibrium problem (MEP) which is to find 

      such that 

 (    )   ( )   (  )              (MEP) 

             If    , this problem reduces to an equilibrium problem (EP), which is to find 

      such that 

 (    )                (EP) 

              So that the set of solutions of (MEP) denoted by   and the set of solutions of 

(EP) denoted by  . The mixed equilibrium problems include fixed point problems, 

optimization problems, variational inequality problems, Nash equilibrium problems, and the 

equilibrium problems as special cases; see, for example, [1-5]. Some methods have been 

proposed to solve the equilibrium problems, see, for example, [5-21]. 

 In 2005, Combettes and Hirstoaga [6] introduced an iterative algorithm of finding 

the best approximation to the initial data when     and proved the strong convergence 

theorem.  

            S. Takahashi and W. Takahashi [8] introduced another iterative algorithm for 

finding a common element of the set of solutions of (EP) and the set of fixed points of a 

nonexpansive mapping in a real Hilbert space called the viscosity approximation method.  
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           Let arbitrary initial     , define the sequences      and      recursively by 

 (    )  
 

  
〈          〉            (TT) 

        (  )  (    )          

             Subsequently, they proved that the sequences      and      defined by (TT) 

converge strongly to      ( )    with the following restrictions on algorithm parameters 

     and      as follow: 

 (i)            and ∑      
   ; 

 (ii)               ; 

 (iii)∑ |       |    
   ; and ∑ |       |    

   . 

 Next, Zeng and Yao [16] introduced a new hybrid iterative algorithm for solving 

mixed equilibrium problems and fixed point problems and Mainge and Moudafi [22] 

introduced an iterative algorithm for solving equilibrium problems and fixed point problems. 

 On the other hand, Moudafi [23] showed the new method for solving the 

equilibrium problem (EP) and proved a weak convergence theorem.  

          Ceng et al. [24] introduced another iterative algorithm for finding an element of 

   ( )   .  

           Let       be a  -strict pseudocontractive mapping for some       such 

that    ( )     . For given     , let the sequences      and      be generated 

iteratively by 

 (    )  
 

  
〈          〉        ,   (CAY) 

           (    )          

where the parameters      and      satisfy the following conditions: 

 (i)            for some     (   ); 

 (ii)      (   ) and               . 

Then, the sequences      and      generated by (CAY) converge weakly to an element of 

   ( )   . 
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 In this independent study, we are interested in the result of Yonghong Yao, Yeong-

Cheng Liou and Yuh-Jenn Wu. So,we shall stydy the proof line of their strong convergence 

theorem and then we expand the proof line for an easier understanding of the theorem. 
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CHAPTER II 

Preliminaries 

2. Preliminaries 

           In case of extending the proof process of a strong convergence theorem, we shall 

introduce the necessariy definitions, lemmas and tools as follow.  

           Let   be a real Hilbert space with inner product 〈   〉 and norm ‖ ‖. Let   be a 

nonempty closed convex subset of  . 

          Let       be a mapping. We use     ( ) to denote the set of the fixed points of 

 . Recall what following. 

(i)   is called demicontractive if there exists a constant       such that 
               ‖     ‖  ‖    ‖   ‖    ‖   (2.1) 

       for all     and       ( ), which is equivalent to 

             〈         〉  
   

 
‖    ‖ .  (2.2) 

    For such case, we also say that   is a  -demicontractive mapping 

(ii)   is called nonexpansive if 
 ‖     ‖  ‖   ‖ (2.3) 

      for all        

(iii)    is called quasi-nonexpansive if 
‖     ‖  ‖    ‖ (2.4) 

     for all     and       ( )  

(iv)    is called strictly pseudocontractive if there exists a constant       such 

that 
‖     ‖  ‖   ‖   ‖(    )  (    )‖  (2.5) 

      for all        

 It is noting that the class of demicontractive mappings includes the class of the 

nonexpansive mappings, the quasi-nonexpansive mappings and the strictly pseudo-

contractive mappings as special cases. 
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 Let us also recall that   is called demiclosed if for any sequence        and 

     we have 

    ,   (   )     strongly       ( )  (2.6) 

It is well-known that the nonexpansive mappings, strictly pseudo-contractive mappings are 

all demiclosed. See, for example, [25-27]. 

 An operator       is said to be  -strongly monotone if there exists a positive 

constant   such that 
〈         〉   ‖   ‖  (2.7) 

for all        

 Now, we concern the following problem: find       ( )    such that 
〈        〉          ( )     (2.8) 

In this paper, for solving problem (2.8) with an equilibrium bifunction       

   we assume that   satisfies the following conditions: 

 (H1) for each         (   ) is conve; 

 (H2)   is monotone, that is,  (   )   (   )    for all        

 (H3) for each fixed         (   ) is concave and upper semicontinuous. 

A mapping         is called Lipschitz continuous, if there exists a constant 

    such that 
‖ (   )‖   ‖   ‖         (2.9) 

A differentiable function       on a convex set   is called 

(i)  -convex if 
 ( )   ( )  〈  ( )  (   )〉         (2.10) 

where    is the Frechet derivative of   at  ; 

(ii) -strongly convex if there exists a constant     such that 

 ( )   ( )  〈  ( )  (   )〉  (
 

 
) ‖   ‖          (2.11) 

Futhermore, we need the following important and interesting tools for proving our main 

results. 
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Tool 1 More precisely, for a real vector space, an inner product 〈   〉 satisfies the following 

four properties. Let      and   be vectors and   be a scalar, then: 

(i). 〈     〉  〈   〉  〈   〉.                                                                  

(ii). 〈    〉   〈   〉. 

         (iii). 〈   〉  〈   〉. 

         (iv). 〈   〉    and equal if and only if    . 

Tool 2 (see,e.g.,Marino and Xu [10]). Let   be a real Hilbert space. There hold the 

following identities; 

(i)    ‖   ‖  ‖ ‖   〈   〉  ‖ ‖ ,            . 

(ii)   ‖   (   ) ‖   ‖ ‖  (   )‖ ‖  (   )‖   ‖ ,           . 

Tool 3 Given   is a closed convex subset of a Hilbert space  , a mapping       is 

firmly nonexpansive if for all       

‖     ‖  〈         〉. 

Tool 4 The limit inferior of a sequence      is defined by  

 (i)                
   

(        )  

          (ii)                                                   

          Silmilarly, the limit superior of      is defined by 

  (i)                
   

(        ) 

 (ii)                                                   

 

Alternatively, the notations 

                     And                         

are sometimes used. 

Tool 5 A sequence of points      in a Hilbert space H is said to converge weakly to a point 

  in   if 
〈    〉  〈   〉 
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for all   in    Here,〈   〉 is understood to be the inner product on the Hilbert space. The 

notation 

    . 

is sometimes used to denote this kind of convergence. 

Tool 6 A sequence    in a normed space   is said to be strongly convergent if there is 

an     such that 

      ‖    ‖   . 

Tool 7 A sequence (  ) is monotonic increasing if         for all    . 

Tool 8 Bounded Sequences of Real Numbers 

A sequences      of numbers is said to be bounded above if there exists a real 

number     such that      for every     .  

A sequences      is said to be bounded below if there exists a real number     

such that      for every     .  

A sequences      is said to be bounded if it is both bounded above and bounded 

below. 

Tool 9 The following theorem is called Contraction Mapping Theorem or Banach 

Fixed Point Theorem.  

Theorem 1. Consider a set     and a function      . Assume  

  (i)   is closed (i.e., it contains all limit points of sequences in  ).  

  (ii)          ( )   . 

  (iii) The mapping g is a contraction on  : There exists     such that 

        ‖ ( )   ( )‖   ‖   ‖. 
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Let   be a nonempty closed convex subset of a real Hilbert space  ,       be 

real-valued function and         be an equilibrium bifunction. Let   be a positive 

number. For a given point    , the problem for (MEP) is to find     such that 

 (   )   ( )   ( )  
 

 
〈  ( )    ( )  (   )〉          (2.12) 

 

Let        be the mapping such that for each         ( ) is the solution set of the 

auxiliary problem, that is,       

  ( )  {     (   )   ( )   ( )  
 

 
〈  ( )    ( )  (   )〉        }  (2.13) 

Lemma 2.1 ([16,28]). Let   be a nonempty closed convex subset of a real Hilbert space   

and let       be a lower semicontinuous and convex functional. Let         be 

an equilibrium bifunction satisfying conditions (H1)-(H3). Assume what follows. 

(i)         is Lipschitz continuous with constant     such that 

(a)  (   )   (   )            
(b)  (   ) is affine in the first variable, 

(c) for each fixed        (   ) is sequentially continuous from the 

weak topology to the weak topology. 

(ii)       is  -strongly convex with constant     and its derivative    is 

sequentially continuous from the weak topology to the strong topology. 

(iii) For each      there exists a bounded subset      and      such that for 

any         

 (    )   (  )   ( )  
 

 
〈  ( )    ( )  (    )〉     (2.14) 

Then there hold the following: 

(i)    is single-valued; 

 (ii)    is nonexpansive if    is Lipschitz continuous with constant     such that 

     and 
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   〈  (  )    (  )  (     )〉  〈  (  )    (  )  (     )〉  (     )               (2.15) 

       where      (  ) for        

 (iii)    (  )     

          (v)   is closed and convex. 
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CHAPTER III 

Main Results 

3.1 Main Results 

In this independent study, we focus on how to prove the strong convergence 

theorem. By studying the research of Yonghong Yao, Yeong-Cheng Liou and Yuh-Jenn 

Wu, we will extend proof lines in their theorem for an easier understanding for those who 

are interested in this research.  

Let       be a mapping and       be a mapping. Let   be a real Hilbert 

space and   be a nonempty closed convex subset of  ,       be a lower 

semicontinuous and convex real-valued function,         be an equilibrium 

bifunction. In this section, we first introduce the following new iterative algorithm. 

Algorithm 3.1 [25-27] Let r be a positive parameter. Let      be a sequence in     ) and 

      be a sequence in     ). Define the sequences     , {  
}, and      by the following 

manner: 

      chosen arbitrarily, 

 (    )   ( )   (  )  
 

 
〈  (  )    (  )  (    )〉               , 

            (3.1) 

     (    )        . 

Now we give a strong convergence result concerning Algorithm 3.1 as follows. 

Theorem 3.2 [16,28] Let   be a real Hilbert space. Let       be a lower 

semicontinuous and convex function. Let         be an equilibrium bifunction 

satisfying conditions (H1) − (H3). Let       be an  -Lipschitz continuous and  -strongly 

monotone mapping and       be a demiclosed and  -demicontractive mapping such 

that    ( )     . Assume what follows. 
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        (i)         is Lipschitz continuous with constant 

            (a)   (   )   (   )            

            (b)   (   ) is affine in the first variable,  

           (c) for each fixed        (   ) is sequentially continuous from the weak 

               topology to the weak topology. 

       (ii)        is  -strongly convex with constant     and its derivative    is not   

           only sequentially continuous from the weak topology to the strong topology                                           

           but also Lipschitz continuous with constant     such that     . 

       (iii) For each    ; there exist a bounded subset         and      such that, 

            for any      , 

 (    )   (  )   ( )  
 

 
〈  ( )    ( )  (    )〉           (3.2) 

       (iv)       (   )  ⁄   for some    ,            and ∑      
   . 

      Then the sequences     ,     , and      generated by (3.1) converge strongly to     

which solves the problem (2.8) provided     is firmly nonexpansive. 

Proof. First, we prove that     ,     , and      are all bounded. Without loss of generality, 

we may assume that 0 <  < L. Given     (       )and        

From (Tool 2), we have 

     ‖(    )  (    ) ‖  ‖(      )  (      )‖  

                                                                 ‖(     )  (     )‖  

                                                     ‖(       )  (   )‖  

                                                           ‖(       )‖   〈           〉  ‖   ‖  

                                                                   ‖     ‖  ‖   ‖    〈         〉 

                                    ‖   ‖  ‖   ‖     ‖   ‖            (3.3)                                                                                                 

                                                                  (          )‖   ‖ . 
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That is, 

‖(    )  (    ) ‖  √          ‖   ‖  (3.4) 

Take        ( )   . From (3.1), we have 

‖     (          )‖ 

 ‖(              )  (          )‖ 

 ‖(       )  (                 )‖                                                  

    ‖        
    

 
     

    

 
     

    

 
   

    

 
   

    

 
       

    

 
    ‖ 

 ‖(  
    

 
) (       )  

    

 
(                   )‖ 

 ‖(  
    

 
) (       )  

    

 
((    )     (    )  )‖ 

  (  
    

 
) ‖       ‖  

    

 
‖(    )     (    )  ‖ 

 (  
    

 
) ‖       ‖  

    

 
√          ‖       ‖ 

 (  
    

 
 
    

 
√          ) ‖       ‖               (3.5) 

 (  (
    

 
)(  √          )) ‖       ‖             

Therefore, 

‖     (          )‖  (  (
     

 
))‖       ‖ (3.6) 

 

where   (  √          )  (   ). 

From (Tool 2) ,we have 

‖(       )  (       )‖  ‖       ‖   〈               〉  ‖       ‖  
                           ‖         ‖

  ‖       ‖   〈               〉  ‖       ‖  

              〈               〉  ‖       ‖  ‖       ‖  ‖         ‖
  

              〈               〉   
 

 
(‖       ‖  ‖       ‖  ‖         ‖

 .  (3.7) 

Note that             and    is firmly nonexpansive. Together with (3.7), we have 
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                                 ‖       ‖  ‖          

 ‖  
                                                           〈                  

 〉 

                                                          〈          
         〉 

                                                          〈               〉 

 
 

 
(‖       ‖  ‖       ‖  ‖         ‖

 ),  (3.8)        

which implies that  

‖       ‖  
 

 
(‖       ‖  ‖       ‖  ‖         ‖

 ) 

 ‖       ‖  ‖       ‖  ‖       ‖  ‖         ‖
  

 ‖       ‖  ‖       ‖  ‖         ‖
 .                        (3.9) 

Since       (   )  ⁄   and       ) and      ,    
 

 
  

 

 
 ,we have 

                                                
   

 
      

                                                                   
   

 
          

                                                                              
 

 
 

 

 
   

                                                                              
 

 
 

 

 
                                                                                            

                                                                              
 

 
 

 

 
              

                                                                                                                                                                            (3.10) 

From (3.10), hence        , such that 

   (     )     (3.11) 

From (2.2), (3.1) and (3.11), we have 

       ‖       ‖  ‖(    )           ‖  

                                       ‖                ‖  

                                       ‖(     )  (          )‖  

                        ‖(     )    (      )‖  
                                       ‖     ‖     〈            〉  ‖  (      )‖  

                                       ‖     ‖
 
    〈            〉    

 ‖(      )‖
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              ‖       ‖  ‖     ‖     
   

 
‖      ‖    

 ‖(      )‖         (3.12)                   

                                        ‖     ‖    (   )‖      ‖    
 ‖(      )‖  

                                        ‖     ‖    (      )‖      ‖  

                                        ‖     ‖ . 

From (3.6) – (3.12), we have 

                   ‖       ‖  ‖                       ‖ 
                                  ‖     (          )‖  ‖       ‖ 
                                  ‖     (          )‖      ‖   ‖ 

  (  
     

 
)‖       ‖      ‖   ‖ 

  (  
     

 
)‖       ‖      ‖   ‖ 

  (  
     

 
)‖     ‖      ‖   ‖ 

 (  
     

 
)‖     ‖  

     

 
{
 

 
‖   ‖}                            (3.13)                                                                                

    {‖     ‖ 
 

 
‖   ‖} 

    {‖     ‖ 
 

 
‖   ‖}. 

This implies that      is bounded. 

Therefore, from (3.12) and (3.13),we have 

                    ‖    ‖   ‖          ‖ 

                                                ‖       ‖  ‖  ‖ 

                                                ‖       ‖  ‖  ‖ 

                                                  ‖  ‖                .                                                                     (3.14)             

This implies that      is bounded. 

Therefore, from (3.9) and (3.14),we have 

                         ‖    ‖    ‖          ‖ 
 ‖       ‖  ‖  ‖ 
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                                      ‖    ‖  ‖       ‖  ‖         ‖

  ‖  ‖ 

                                                      ‖       ‖  ‖  ‖ 

                                                         ‖  ‖              .                                                         (3.15)                  

This implies that      is bounded. 

From (3.1),we can write        (   ⁄ )(       ).Thus, from (3.12), we have 

            ‖       ‖  ‖     ‖    (      )‖      ‖  

 ‖     ‖    (      ) ‖
 

  
(       )‖

 

 

 ‖     ‖    (      )
 

  
 
‖(       )‖

  

 ‖     ‖  
      

  
‖(       )‖

 .                                           (3.16)                

Since    (  (   )   , we have 

       
   

 
 

   

 
       

         

            

            

 
      

  
  .                                                                                 (3.17) 

Therefore (      )     , from (3.9) and (3.16), we obtain 

     ‖       ‖  ‖     ‖  (
      

  
) ‖       ‖

  

                                 ‖     ‖  ‖       ‖
  

                                 ‖           ‖  ‖             ‖
  

                                 ‖           ‖  ‖             ‖  

 ‖     ‖     〈         〉    
 ‖   ‖  

                                       ‖       ‖
     〈           〉    

 ‖   ‖  

 ‖     ‖     〈           〉  ‖       ‖  
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              ‖       ‖  ‖     ‖  ‖     ‖     〈           〉 

               ‖       ‖ .              (3.18)  

We note that      and      are bounded. So there exists a constant     such that 

|〈           〉|              (3.19) 

Consequently, we get 

                     ‖       ‖  ‖     ‖  ‖       ‖  ‖     ‖      .       (3.20) 

Now we divide into two cases to prove that      converges strongly to   . 

Case 1. Assume that the sequence  ‖     ‖  is a monotone sequence. Then 

  ‖     ‖  is convergent. Setting       ‖     ‖   . 

           ( ) If    , then the desired conclusion is obtained. 

          (  ) Assume that    . Clearly, we have 

‖       ‖  ‖     ‖     (3.21) 

This together with      and (3.20), (3.21) implies that 

‖       ‖  ‖     ‖     (3.22) 

That is to say 

‖       ‖          ‖     ‖       (3.23) 

Let     be a weak limit point of {   
}. Then there exists a subsequence of {   

}, still 

denoted by {   
}. Which weakly converges to z. Noting that     , we also have 

   
    

    
    

       (3.24) 

Combining (3.1)and (3.23) we have 

      (    )   
       

 

         
       (    )   

 

                                                                           (   
      

) 
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                                          ‖    
    

‖  
 

   
(       ) 

                                                                      
 

   
(   

     ) 

                                                                      
 

   
(         

) 

                                                                      
 

   
‖         

    
    

‖                                   (3.25)                                                        

                                                                             
 

   
‖         

‖  
 

   
 

  

‖    
‖                                            

  . 

Since   is demiclosed, then we obtain       ( ). 

 Next we show that     Since        , we derive 

           (    )   ( )   (  )  
 

 
〈  (  )    (  )  (    )〉                .      (3.26) 

From the monotonicity of  , we have 

        
 

    
〈  (  )    (  )  (    )〉   ( )   (  )    (    )   (    )         (3.27) 

and hence 

     
 

    
〈  (  )    (  )  (    )〉   ( )   (  )    (    )   (    ).          (3.28) 

Since (  (   
)    (   

))    ⁄   and    
  , from the weak lower semicontinuity of    

and  (   ) in the second variable  , we have 

                  (   )   ( )   ( )   ,           (3.29) 

For       and    , let       (   ) . Since     and    ,  we have      

and hence  (    )   ( )   (  )    From the convexity of equilibrium bifunction 

 (   )  in the second variable  , we have 
    (     )   (  )   (  ) 

                     (      (   ) )   (   (   ) )   (  ) 

                     (     )   (   (   ) )   (  )   ((   ) )   (  ) 

                     (    )  (   )  (    )     ( )  (   ) ( )   (  ) 

                      (    )  (   )( (  )   ( ))     ( )  (   ) ( )   (  ) 
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   (    )    (  )   ( )    (  )    ( )     ( )   ( )    ( ) 

  (  ) 

   (    )    (  )    ( )                                      

     (    )   ( )   (  )                                                                                        (3.30)                                         

and hence  (    )   ( )   (  )   . Then, we have 

 (   )   ( )   ( )    (3.31) 

for all     and hence    . 

Therefore, we have 

     ( )   . (3.32) 

Thus, if    is a solution of problem (2.8), we have 

   
   

   〈   
       〉  〈        〉     (3.33) 

Suppose that there exists another subsequence {   
} which weakly converges to   . It is 

easily checked that       ( )    and 

   
   

   〈   
       〉  〈          〉     (3.34) 

Therefore, we have  

   
   

   〈         〉     (3.35) 

Since   is  -strongly monotone, we have 

         〈           〉  〈                         〉 

 〈                   〉  〈                 〉 

 〈             〉  〈         〉  〈           〉 

                                            ‖     ‖  〈         〉  〈           〉.                      (3.36)                

By (3.9) and (3.23)   (3.36), we get 

〈           〉   ‖     ‖  〈         〉  〈           〉 

                                〈           〉   ‖     ‖  
                                                                  ‖     ‖  
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   〈           〉                                                                                        (3.37) 

Therefore, 

                                                    〈           〉        

             〈           〉      (     ),                                      

(3.38)              

From (3.18), (3.22) and (3.38), for        , we deduce that there exists a positive 

integer number    large enough, when     , 

             ‖       ‖  ‖     ‖  ‖     ‖     〈           〉  ‖       ‖  .    (3.39) 

Then, 

      ‖       ‖  ‖     ‖      〈           〉  ‖     ‖  ‖       ‖  

     (     ).                                                                                (3.40) 

This implies that 

‖       ‖  ‖   
   ‖

 
   (     ) ∑   

 

    

   
(3.41) 

Since ∑   
 
      and      is bounded, hence the last inequality is a contraction. 

Therefore,    , that is to say,       . 

Case 2. Assume that  ‖      ‖  is not a monotone sequence. Set    ‖      ‖  and 

let       be a mapping for all      by 

 ( )                      . (3.42) 

Clearly, τ is a nondecreasing sequence such that  ( )    as     and 

  ( )    ( )   for     . From (3.42), we have 

‖  ( )     ( )‖
 
 ‖  ( )    ( )‖

 
     ( )     (3.43) 

Thus 

‖  ( )     ( )‖             ‖  ( )    ( )‖   . (3.44) 

Therefore,       
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‖  ( )     ( )‖
 
 ‖  ( )    ( )‖

 
    

‖(  ( )     ( ))  (  ( )    ( ))‖
 

   

              ‖  ( )     ( )    ( )    ( )‖
 

   

                                                                                                 ‖  ( )     ( )‖   .                    (3.45)                         

From (3.44),we have 

                                       ‖  ( )     ( )       ‖    

                                                           ‖  ( )     ‖  ‖  ( )    ‖   .                     (3.46)                     

Since   ( )    ( )  , for all     , from (3.18), we get 

  ‖  ( )    ‖
 
 ‖  ( )    ( )‖

 
    ( )〈  ( )         ( )〉 

 ‖  ( )     ( )‖
 
 ‖  ( )     ‖

 
 

  ‖  ( )     ‖
 
 ‖  ( )    ‖

 
 ‖  ( )    ( )‖

 
 ‖  ( )     ( )‖

 

 

                           ( )〈  ( )         ( )〉 

                      ( )〈  ( )         ( )〉.                                                                                              (3.47) 

Which implies that 

〈  ( )         ( )〉            .  (3.48) 

Since {  ( )} is bounded, there exists a subsequence of {  ( )}, still denoted by 

{  ( )} which converges weakly to    . It is easily checked that      ( ). 

Furthermore, we observe that  

     ‖  ( )    ‖
 

 〈  ( )        ( )     〉 

                                  〈  ( )       ( )     ( )      ( )     〉 

                            〈  ( )       ( )     ( )      ( )〉  〈  ( )       ( )     ( )       〉 

                                 〈  ( )         ( )〉  〈  ( )    ( )      ( )〉  〈  ( )        〉.                (3.49) 

Hence, for all     , 
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 ‖  ( )    ‖
 

 〈  ( )    ( )      ( )〉  〈  ( )        〉. 

Therefore,From (2.8) and (3.50),we have 

                                      ‖  ( )    ‖
 

  
 

 
〈  ( )        〉 

                                                  ‖  ( )    ‖
 

  
 

 
〈        〉   ,                (3.51)                       

which implies that  

   
   

‖  ( )    ‖     (3.52) 

Thus,  

      ‖  ( )    ‖   . (3.53) 

It is immediate that  

        ( )     
   

  ( )    . (3.54) 

 

Furthermore, for     , it is easily observed that     
 ( )   if    ( ) (i.e,  ( )   ), 

because     
   

 for  ( )       . As a consequence, we obtain for all     , 

        {  ( )   ( )  }    ( )  . (3.55) 

Hence    
   

    , that is,      converges strongly to   . Consequently, it easy to prove 

that      and      converge strongly to   . This completes the proof. 
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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let ϕ :
C → R be a real-valued function and Θ : C × C → R be an equilibrium bifunction, that is,
Θ(u, u) = 0 for each u ∈ C. We consider the following mixed equilibrium problem (MEP)
which is to find x∗ ∈ C such that

Θ
(
x∗, y

)
+ ϕ

(
y
) − ϕ(x∗) ≥ 0, ∀y ∈ C. (MEP)

In particular, if ϕ ≡ 0, this problem reduces to the equilibrium problem (EP), which is to find
x∗ ∈ C such that

Θ
(
x∗, y

) ≥ 0, ∀y ∈ C. (EP)

Denote the set of solutions of (MEP) by Ω and the set of solutions of (EP) by Γ. The mixed
equilibrium problems include fixed point problems, optimization problems, variational
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inequality problems, Nash equilibrium problems, and the equilibrium problems as special
cases; see, for example, [1–5]. Some methods have been proposed to solve the equilibrium
problems, see, for example, [5–21].

In 2005, Combettes and Hirstoaga [6] introduced an iterative algorithm of finding the
best approximation to the initial data when Γ/= ∅ and proved a strong convergence theorem.
Recently by using the viscosity approximation method S. Takahashi and W. Takahashi [8]
introduced another iterative algorithm for finding a common element of the set of solutions
of (EP) and the set of fixed points of a nonexpansive mapping in a real Hilbert space. Let
S : C → H be a nonexpansive mapping and f : C → C be a contraction. Starting with
arbitrary initial x1 ∈ H, define the sequences {xn} and {un} recursively by

Θ
(
un, y

)
+

1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)Sun, ∀n ≥ 0.

(TT)

S. Takahashi and W. Takahashi proved that the sequences {xn} and {un} defined by (TT)
converge strongly to z ∈ Fix(S) ∩ Γ with the following restrictions on algorithm parameters
{αn} and {rn}:

(i) limn→∞αn = 0 and
∑∞

n=0 αn = ∞;

(ii) lim infn→∞ rn > 0;

(iii) (A1):
∑∞

n=0 |αn+1 − αn| < ∞; and (R1):
∑∞

n=0 |rn+1 − rn| < ∞.

Subsequently, some iterative algorithms for equilibrium problems and fixed point
problems have further developed by some authors. In particular, Zeng and Yao [16]
introduced a new hybrid iterative algorithm for mixed equilibrium problems and fixed point
problems and Mainge and Moudafi [22] introduced an iterative algorithm for equilibrium
problems and fixed point problems.

On the other hand, for solving the equilibrium problem (EP), Moudafi [23] presented a
new iterative algorithm and proved a weak convergence theorem. Ceng et al. [24] introduced
another iterative algorithm for finding an element of Fix(S) ∩ Γ. Let S : C → C be a k-strict
pseudocontraction for some 0 ≤ k < 1 such that Fix(S) ∩ Γ/= ∅. For given x1 ∈ H, let the
sequences {xn} and {un} be generated iteratively by

Θ
(
un, y

)
+

1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnun + (1 − αn)Sun, ∀n ≥ 1,

(CAY)

where the parameters {αn} and {rn} satisfy the following conditions:

(i) {αn} ⊂ [α, β] for some α, β ∈ (k, 1);

(ii) {rn} ⊂ (0,∞) and lim infn→∞rn > 0.

Then, the sequences {xn} and {un} generated by (CAY) converge weakly to an element of
Fix(S) ∩ Γ.

At this point, we should point out that all of the above results are interesting and
valuable. At the same time, these results also bring us the following conjectures.
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Questions

(1) Could we weaken or remove the control condition (iii) on algorithm parameters in
S. Takahashi and W. Takahashi [8]?

(2) Could we construct an iterative algorithm for k-strict pseudocontractions such that
the strong convergence of the presented algorithm is guaranteed?

(3) Could we give some proof methods which are different from those in [8, 12, 16, 24]?

It is our purpose in this paper that we introduce a general iterative algorithm for
approximating a common element of the set of fixed points of a demicontractive mapping
and the set of solutions of a mixed equilibrium problem. Subsequently, we prove the strong
convergence of the proposed algorithm under some mild assumptions. Our results give
positive answers to the above questions.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty
closed convex subset of H.

Let T : C → C be a mapping. We use Fix(T) to denote the set of the fixed points of T .
Recall what follows.

(i) T is called demicontractive if there exists a constant 0 ≤ k < 1 such that

‖Tx − x∗‖2 ≤ ‖x − x∗‖2 + k‖x − Tx‖2 (2.1)

for all x ∈ C and x∗ ∈ Fix(T), which is equivalent to

〈x − Tx, x − x∗〉 ≥ 1 − k

2
‖x − Tx‖2. (2.2)

For such case, we also say that T is a k-demicontractive mapping.

(ii) T is called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖ (2.3)

for all x, y ∈ C.

(iii) T is called quasi-nonexpansive if

‖Tx − x∗‖ ≤ ‖x − x∗‖ (2.4)

for all x ∈ C and x∗ ∈ Fix(T).

(iv) T is called strictly pseudocontractive if there exists a constant 0 ≤ k < 1 such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k‖(x − Tx) − (y − Ty)‖2 (2.5)

for all x, y ∈ C.
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It is worth noting that the class of demicontractive mappings includes the class of
the nonexpansive mappings, the quasi-nonexpansive mappings and the strictly pseudo-
contractive mappings as special cases.

Let us also recall that T is called demiclosed if for any sequence {xn} ⊂ H and x ∈ H,
we have

xn −→ x weakly, (I − T)xn −→ 0 strongly =⇒ x ∈ Fix(T). (2.6)

It is well-known that the nonexpansive mappings, strictly pseudo-contractive mappings are
all demiclosed. See, for example, [25–27].

An operator A : C → H is said to be δ-strongly monotone if there exists a positive
constant δ such that

〈Ax −Ay, x − y〉 ≥ δ‖x − y‖2 (2.7)

for all x, y ∈ C.
Now we concern the following problem: find x∗ ∈ Fix(T) ∩Ω such that

〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T) ∩Ω. (2.8)

In this paper, for solving problem (2.8)with an equilibrium bifunctionΘ : C×C → R,
we assume that Θ satisfies the following conditions:

(H1) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;

(H2) for each fixed y ∈ C, x �→ Θ(x, y) is concave and upper semicontinuous;

(H3) for each x ∈ C, y �→ Θ(x, y) is convex.

A mapping η : C × C → H is called Lipschitz continuous, if there exists a constant
λ > 0 such that

‖η(x, y)‖ ≤ λ‖x − y‖, ∀x, y ∈ C. (2.9)

A differentiable function K : C → R on a convex set C is called

(i) η-convex if

K
(
y
) −K(x) ≥ 〈K′(x), η

(
y, x

)〉, ∀x, y ∈ C, (2.10)

where K′ is the Frechet derivative of K at x;

(ii) η-strongly convex if there exists a constant σ > 0 such that

K
(
y
) −K(x) − 〈K′(x), η

(
y, x

)〉 ≥
(σ
2

)
‖x − y‖2, ∀x, y ∈ C. (2.11)
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Let C be a nonempty closed convex subset of a real Hilbert space H, ϕ : C → R be
real-valued function and Θ : C × C → R be an equilibrium bifunction. Let r be a positive
number. For a given point x ∈ C, the auxiliary problem for (MEP) consists of finding y ∈ C
such that

Θ
(
y, z

)
+ ϕ(z) − ϕ

(
y
)
+
1
r
〈K′(y

) −K′(x), η
(
z,y

)〉 ≥ 0, ∀z ∈ C. (2.12)

Let Sr : C → C be the mapping such that for each x ∈ C, Sr(x) is the solution set of the
auxiliary problem, that is, ∀x ∈ C,

Sr(x) =
{
y ∈ C : Θ

(
y, z

)
+ ϕ(z) − ϕ

(
y
)
+
1
r

〈
K′(y

) −K′(x), η
(
z, y

)〉 ≥ 0, ∀z ∈ C

}
. (2.13)

We need the following important and interesting result for proving our main results.

Lemma 2.1 ([16, 28]). Let C be a nonempty closed convex subset of a real Hilbert space H and let
ϕ : C → R be a lower semicontinuous and convex functional. Let Θ : C × C → R be an equilibrium
bifunction satisfying conditions (H1)–(H3). Assume what follows.

(i) η : C × C → H is Lipschitz continuous with constant λ > 0 such that

(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ C,
(b) η(·, ·) is affine in the first variable,
(c) for each fixed y ∈ C, x �→ η(y, x) is sequentially continuous from the weak topology

to the weak topology.

(ii) K : C → R is η-strongly convex with constant σ > 0 and its derivative K′ is sequentially
continuous from the weak topology to the strong topology.

(iii) For each x ∈ C, there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y ∈ C \Dx,

Θ
(
y, zx

)
+ ϕ(zx) − ϕ

(
y
)
+
1
r
〈K′(y

) −K′(x), η
(
zx, y

)〉 < 0. (2.14)

Then there hold the following:

(i) Sr is single-valued;

(ii) Sr is nonexpansive ifK′ is Lipschitz continuous with constant ν > 0 such that σ ≥ λν and

〈
K′(x1) −K′(x2), η(u1, u2)

〉 ≥ 〈
K′(u1) −K′(u2), η(u1, u2)

〉
, ∀(x1, x2) ∈ C × C, (2.15)

where ui = Sr(xi) for i = 1, 2;

(iii) Fix(Sr) = Ω;

(iv) Ω is closed and convex.
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3. Main Results

LetH be a real Hilbert space, ϕ : H → R be a lower semicontinuous and convex real-valued
function, Θ : H × H → R be an equilibrium bifunction. Let A : H → H be a mapping
and T : H → H be a mapping. In this section, we first introduce the following new iterative
algorithm.

Algorithm 3.1. Let r be a positive parameter. Let {λn} be a sequence in [0,∞) and {αn} be a
sequence in [0, 1). Define the sequences {xn}, {yn}, and {zn} by the following manner:

x0 ∈ C chosen arbitrarily,

Θ(zn, x) + ϕ(x) − ϕ(zn) +
1
r
〈K′(zn) −K′(xn), η(x, zn)〉 ≥ 0, ∀x ∈ C,

yn = zn − λnAzn,

xn+1 = (1 − αn)yn + αnTyn.

(3.1)

Now we give a strong convergence result concerning Algorithm 3.1 as follows.

Theorem 3.2. Let H be a real Hilbert space. Let ϕ : H → R be a lower semicontinuous and convex
functional. Let Θ : H × H → R be an equilibrium bifunction satisfying conditions (H1)–(H3). Let
A : H → H be an L-Lipschitz continuous and δ-strongly monotone mapping and T : H → H be a
demiclosed and k-demicontractive mapping such that Fix(T) ∩Ω/= ∅. Assume what follows.

(i) η : H ×H → H is Lipschitz continuous with constant λ > 0 such that

(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ H,

(b) η(·, ·) is affine in the first variable,

(c) for each fixed y ∈ H, x �→ η(y, x) is sequentially continuous from the weak topology
to the weak topology.

(ii) K : H → R is η-strongly convex with constant σ > 0 and its derivative K′ is not only
sequentially continuous from the weak topology to the strong topology but also Lipschitz
continuous with constant ν > 0 such that σ ≥ λν.

(iii) For each x ∈ H; there exist a bounded subset Dx ⊂ H and zx ∈ H such that, for any
y /∈Dx,

Θ
(
y, zx

)
+ ϕ(zx) − ϕ

(
y
)
+
1
r

〈
K′(y

) −K′(x), η
(
zx, y

)〉
< 0. (3.2)

(iv) αn ∈ [γ, (1 − k)/2] for some γ > 0, limn→∞λn = 0 and
∑∞

n=0 λn = ∞.

Then the sequences {xn}, {yn}, and {zn} generated by (3.1) converge strongly to x∗ which solves the
problem (2.8) provided Sr is firmly nonexpansive.
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Proof. First, we prove that {xn}, {yn}, and {zn} are all bounded. Without loss of generality,
we may assume that 0 < δ < L. Given μ ∈ (0, 2δ/L2) and x, y ∈ H, we have

‖(μA − I)x − (μA − I)y‖2 = μ2‖Ax −Ay‖2 + ‖x − y‖2 − 2μ〈Ax −Ay, x − y〉

≤ μ2L2‖x − y‖2 + ‖x − y‖2 − 2μδ‖x − y‖2

=
(
1 − 2μδ + μ2L2

)
‖x − y‖2,

(3.3)

that is,

‖(μA − I
)
x − (

μA − I
)
y‖ ≤

√
1 − 2μδ + μ2L2‖x − y‖. (3.4)

Take x∗ ∈ Fix(T) ∩Ω. From (3.1), we have

‖yn+1 − (x∗ − λn+1Ax∗)‖ = ‖(zn+1 − λn+1Azn+1) − (x∗ − λn+1Ax∗)‖

=
∥∥∥∥

(
1 − λn+1

μ

)
(zn+1 − x∗) − λn+1

μ

((
μA − I

)
zn+1 −

(
μA − I

)
x∗)

∥∥∥∥

≤
(
1 − λn+1

μ

)
‖zn+1 − x∗‖ + λn+1

μ
‖(μA − I

)
zn+1 −

(
μA − I

)
x∗‖.

(3.5)

Therefore,

‖yn+1 − (x∗ − λn+1Ax∗)‖ ≤
(
1 − λn+1ω

μ

)
‖zn+1 − x∗‖, (3.6)

where ω = 1 −
√
1 − 2μδ + μ2L2 ∈ (0, 1).

Note that zn+1 = Srxn+1 and Sr are firmly nonexpansive. Hence, we have

‖zn+1 − x∗‖2 = ‖Srxn+1 − Srx
∗‖2

≤ 〈Srxn+1 − Srx
∗, xn+1 − x∗〉

= 〈zn+1 − x∗, xn+1 − x∗〉

=
1
2

(
‖zn+1 − x∗‖2 + ‖xn+1 − x∗‖2 − ‖xn+1 − zn+1‖2

)
,

(3.7)

which implies that

‖zn+1 − x∗‖2 ≤ ‖xn+1 − x∗‖2 − ‖xn+1 − zn+1‖2. (3.8)
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From (2.2) and (3.1), we have

‖xn+1 − x∗‖2 = ‖(1 − αn)yn + αnTyn − x∗‖2

= ‖(yn − x∗) − αn(yn − Tyn)‖2

= ‖yn − x∗‖2 − 2αn〈yn − Tyn, yn − x∗〉 + α2
n‖yn − Tyn‖2

≤ ‖yn − x∗‖2 − 2αn
1 − k

2
‖yn − Tyn‖2 + α2

n‖yn − Tyn‖2

= ‖yn − x∗‖2 − αn(1 − k − αn)‖yn − Tyn‖2

≤ ‖yn − x∗‖2.

(3.9)

From (3.6)–(3.9), we have

‖yn+1 − x∗‖ ≤ ‖yn+1 − (x∗ − λn+1Ax∗)‖ + λn+1‖Ax∗‖

≤
(
1 − λn+1ω

μ

)
‖zn+1 − x∗‖ + λn+1‖Ax∗‖

≤
(
1 − λn+1ω

μ

)
‖xn+1 − x∗‖ + λn+1‖Ax∗‖

≤
(
1 − λn+1ω

μ

)
‖yn − x∗‖ + λn+1‖Ax∗‖

=
(
1 − λn+1ω

μ

)
‖yn − x∗‖ + λn+1ω

μ

{ μ

ω
‖Ax∗‖

}

≤ max
{
‖yn − x∗‖, μ‖Ax∗‖

ω

}

≤ · · ·

≤ max
{
‖y0 − x∗‖, μ‖Ax∗‖

ω

}
.

(3.10)

This implies that {yn} is bounded, so are {xn} and {zn}.
From (3.1), we can write yn − Tyn = (1/αn)(yn − xn+1). Thus, from (3.9), we have

‖xn+1 − x∗‖2 ≤ ‖yn − x∗‖2 − αn(1 − k − αn)‖yn − Tyn‖2

≤ ‖yn − x∗‖2 − 1 − k − αn

αn
‖yn − xn+1‖2.

(3.11)
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Since αn ∈ (0, (1 − k)/2], (1 − k − αn)/αn ≥ 1. Therefore, from (3.8) and (3.11), we obtain

‖xn+1 − x∗‖2 ≤ ‖yn − x∗‖2 − ‖yn − xn+1‖2

= ‖zn − x∗ − λnAzn‖2 − ‖zn − xn+1 − λnAzn‖2

= ‖zn − x∗‖2 − 2λn〈Azn, zn − x∗〉 + λ2n‖Azn‖2

− ‖zn − xn+1‖2 + 2λn〈Azn, zn − xn+1〉 − λ2n‖Azn‖2

= ‖zn − x∗‖2 − 2λn〈xn+1 − x∗, Azn〉 − ‖xn+1 − zn‖2

≤ ‖xn − x∗‖2 − ‖xn − zn‖2 − 2λn〈xn+1 − x∗, Azn〉 − ‖xn+1 − zn‖2.

(3.12)

We note that {xn} and {zn} are bounded. So there exists a constant M ≥ 0 such that

|〈xn+1 − x∗, Azn〉| ≤ M ∀n ≥ 0. (3.13)

Consequently, we get

‖xn+1 − x∗‖2 − ‖xn − x∗‖2 + ‖xn+1 − zn‖2 + ‖xn − zn‖2 ≤ 2Mλn. (3.14)

Now we divide two cases to prove that {xn} converges strongly to x∗.

Case 1. Assume that the sequence {‖xn − x∗‖} is a monotone sequence. Then {‖xn − x∗‖} is
convergent. Setting limn→∞‖xn − x∗‖ = d.

(i) If d = 0, then the desired conclusion is obtained.

(ii) Assume that d > 0. Clearly, we have

‖xn+1 − x∗‖2 − ‖xn − x∗‖2 −→ 0, (3.15)

this together with λn → 0 and (3.14) implies that

‖xn+1 − zn‖2 + ‖xn − zn‖2 −→ 0, (3.16)

that is to say

‖xn+1 − zn‖ −→ 0, ‖xn − zn‖ −→ 0. (3.17)

Let z ∈ H be a weak limit point of {znk}. Then there exists a subsequence of {znk}, still
denoted by {znk}which weakly converges to z. Noting that λn → 0, we also have

ynk = znk − λnkAznk −→ z weakly. (3.18)
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Combining (3.1) and (3.17), we have

‖Tynk − ynk‖ =
1
αnk

‖ynk − xnk+1‖

=
1
αnk

‖xnk+1 − znk + λnkAznk‖

≤ ‖xnk+1 − znk‖ + λnk‖Aznk‖
−→ 0.

(3.19)

Since T is demiclosed, then we obtain z ∈ Fix(T).

Next we show that z ∈ Ω. Since zn = Srxn, we derive

Θ(zn, x) + ϕ(x) − ϕ(zn) +
1
r
〈K′(zn) −K′(xn), η(x, zn)〉 ≥ 0, ∀x ∈ C. (3.20)

From the monotonicity of Θ, we have

1
r
〈K′(zn) −K′(xn), η(x, zn)〉 + ϕ(x) − ϕ(zn) ≥ −Θ(zn, x) ≥ Θ(x, zn), (3.21)

and hence

〈
K′(znk) −K′(xnk)

r
, η(x, znk)

〉
+ ϕ(x) − ϕ(znk) ≥ Θ(x, znk). (3.22)

Since (K′(znk) − K′(xnk))/r → 0 and znk → z weakly, from the weak lower semicontinuity
of ϕ and Θ(x, y) in the second variable y, we have

Θ(x, z) + ϕ(z) − ϕ(x) ≤ 0, (3.23)

for all x ∈ C. For 0 < t ≤ 1 and x ∈ C, let xt = tx + (1 − t)z. Since x ∈ C and z ∈ C, we have
xt ∈ C and hence Θ(xt, z) + ϕ(z) − ϕ(xt) ≤ 0. From the convexity of equilibrium bifunction
Θ(x, y) in the second variable y, we have

0 = Θ(xt, xt) + ϕ(xt) − ϕ(xt)

≤ tΘ(xt, x) + (1 − t)Θ(xt, z) + tϕ(x) + (1 − t)ϕ(z) − ϕ(xt)

≤ t
[
Θ(xt, x) + ϕ(x) − ϕ(xt)

]
,

(3.24)

and hence Θ(xt, x) + ϕ(x) − ϕ(xt) ≥ 0. Then, we have

Θ(z, x) + ϕ(x) − ϕ(z) ≥ 0 (3.25)

for all x ∈ C and hence z ∈ Ω.
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Therefore, we have

z ∈ Fix(T) ∩Ω. (3.26)

Thus, if x∗ is a solution of problem (2.8), we have

lim inf
k→∞

〈znk − x∗, Ax∗〉 = 〈z − x∗, Ax∗〉 ≥ 0. (3.27)

Suppose that there exists another subsequence {zni}which weakly converges to z′. It is easily
checked that z′ ∈ Fix(T) ∩Ω and

lim inf
i→∞

〈zni − x∗, Ax∗〉 =
〈
z′ − x∗, Ax∗〉 ≥ 0. (3.28)

Therefor, we have

lim inf
n→∞

〈zn − x∗, Ax∗〉 ≥ 0. (3.29)

Since A is δ-strongly monotone, we have

〈xn+1 − x∗, Azn〉 ≥ δ‖zn − x∗‖2 + 〈zn − x∗, Ax∗〉 + 〈xn+1 − zn,Azn〉. (3.30)

By (3.17)–(3.30), we get

lim inf
n→∞

〈xn+1 − x∗, Azn〉 ≥ δd2. (3.31)

From (3.12), for 0 < ε < δd2, we deduce that there exists a positive integer number n0 large
enough, when n ≥ n0,

‖xn+1 − x∗‖2 − ‖xn − x∗‖2 ≤ −2λn
(
δd2 − ε

)
. (3.32)

This implies that

‖xn+1 − x∗‖2 − ‖xn0 − x∗‖2 ≤ −2
(
δd2 − ε

) n∑

k=n0

λk. (3.33)

Since
∑∞

n=0 λn = ∞ and {xn} is bounded, hence the last inequality is a contraction. Therefore,
d = 0, that is to say, xn → x∗.

Case 2. Assume that {‖xn − x∗‖} is not a monotone sequence. Set Γn = ‖xn − x∗‖2 and let
τ : N → N be a mapping for all n ≥ n0 by

τ(n) = max{k ∈ N : k ≤ n, Γk ≤ Γk+1}. (3.34)
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Clearly, τ is a nondecreasing sequence such that τ(n) → ∞ as n → ∞ and Γτ(n) ≤ Γτ(n)+1 for
n ≥ n0. From (3.14), we have

‖xτ(n)+1 − zτ(n)‖2 + ‖xτ(n) − zτ(n)‖2 ≤ 2Mλτ(n) −→ 0, (3.35)

thus

‖xτ(n)+1 − zτ(n)‖ −→ 0, ‖xτ(n) − zτ(n)‖ −→ 0. (3.36)

Therefore,

‖xτ(n)+1 − xτ(n)‖ −→ 0. (3.37)

Since Γτ(n) ≤ Γτ(n)+1, for all n ≥ n0, from (3.12), we get

0 ≤ ‖xτ(n)+1 − x∗‖2 − ‖xτ(n) − x∗‖2 + ‖xτ(n)+1 − zτ(n)‖2 + ‖xτ(n) − zτ(n)‖2

≤ −2λτ(n)
〈
xτ(n)+1 − x∗, Azτ(n)

〉
,

(3.38)

which implies that

〈
xτ(n)+1 − x∗, Azτ(n)

〉 ≤ 0 ∀n ≥ n0. (3.39)

Since {zτ(n)} is bounded, there exists a subsequence of {zτ(n)}, still denoted by {zτ(n)} which
converges weakly to q ∈ H. It is easily checked that q ∈ Fix(T) ∩Ω. Furthermore, we observe
that

δ‖zτ(n) − x∗‖2 ≤ 〈
zτ(n) − x∗, Azτ(n) −Ax∗〉

=
〈
xτ(n)+1 − x∗, Azτ(n)

〉
+
〈
zτ(n) − xτ(n)+1, Azτ(n)

〉 − 〈
zτ(n) − x∗, Ax∗〉.

(3.40)

Hence, for all n ≥ n0,

δ‖zτ(n) − x∗‖2 ≤ 〈
zτ(n) − xτ(n)+1, Azτ(n)

〉 − 〈
zτ(n) − x∗, Ax∗〉. (3.41)

Therefore

lim sup
n→∞

‖zτ(n) − x∗‖2 ≤ − 1
δ

〈
q − x∗, Ax∗〉 ≤ 0, (3.42)

which implies that

lim
n→∞

‖zτ(n) − x∗‖ = 0. (3.43)
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Thus,

lim
n→∞

‖xτ(n) − x∗‖ = 0. (3.44)

It is immediate that

lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1 = 0. (3.45)

Furthermore, for n ≥ n0, it is easily observed that Γn ≤ Γτ(n)+1 if n/= τ(n) (i.e., τ(n) < n),
because Γj > Γj+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain for all n ≥ n0,

0 ≤ Γn ≤ max
{
Γτ(n),Γτ(n)+1

}
= Γτ(n)+1. (3.46)

Hence limn→∞Γn = 0, that is, {xn} converges strongly to x∗. Consequently, it easy to prove
that {yn} and {zn} converge strongly to x∗. This completes the proof.

Remark 3.3. The advantages of these results in this paper are that less restrictions on the
parameters {λn} are imposed.

As direct consequence of Theorem 3.2, we obtain the following.

Corollary 3.4. Let H be a real Hilbert space. Let ϕ : H → R be a lower semicontinuous and convex
functional. Let Θ : H × H → R be an equilibrium bifunction satisfying conditions (H1)–(H3). Let
A : H → H be an L-Lipschitz continuous and δ-strongly monotone mapping and T : H → H be a
nonexpansive mapping such that Fix(T) ∩Ω/= ∅. Assume what follows.

(i) η : H ×H → H is Lipschitz continuous with constant λ > 0 such that;

(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ H,
(b) η(·, ·) is affine in the first variable,
(c) for each fixed y ∈ H, x �→ η(y, x) is sequentially continuous from the weak topology

to the weak topology.

(ii) K : H → R is η-strongly convex with constant σ > 0 and its derivative K′ is not only
sequentially continuous from the weak topology to the strong topology but also Lipschitz
continuous with constant ν > 0 such that σ ≥ λν.

(iii) For each x ∈ H; there exist a bounded subset Dx ⊂ H and zx ∈ H such that, for any
y /∈Dx,

Θ
(
y, zx

)
+ ϕ(zx) − ϕ

(
y
)
+
1
r

〈
K′(y

) −K′(x), η
(
zx, y

)〉
< 0. (3.47)

(iv) αn ∈ [γ, (1 − k)/2] for some γ > 0, limn→∞λn = 0 and
∑∞

n=0 λn = ∞.

Then the sequences {xn}, {yn}, and {zn} generated by (3.1) converge strongly to x∗ which solves the
problem (2.8) provided Sr is firmly nonexpansive.
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Corollary 3.5. Let H be a real Hilbert space. Let ϕ : H → R be a lower semicontinuous and convex
functional. Let Θ : H × H → R be an equilibrium bifunction satisfying conditions (H1)–(H3). Let
A : H → H be an L-Lipschitz continuous and δ-strongly monotone mapping and T : H → H be a
strictly pseudo-contractive mapping such that Fix(T) ∩Ω/= ∅. Assume what follows.

(i) η : H ×H → H is Lipschitz continuous with constant λ > 0 such that

(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ H,
(b) η(·, ·) is affine in the first variable,
(c) for each fixed y ∈ H, x �→ η(y, x) is sequentially continuous from the weak topology

to the weak topology.

(ii) K : H → R is η-strongly convex with constant σ > 0 and its derivative K′ is not only
sequentially continuous from the weak topology to the strong topology but also Lipschitz
continuous with constant ν > 0 such that σ ≥ λν.

(iii) For each x ∈ H; there exist a bounded subset Dx ⊂ H and zx ∈ H such that, for any
y /∈Dx,

Θ
(
y, zx

)
+ ϕ(zx) − ϕ

(
y
)
+
1
r

〈
K′(y

) −K′(x), η
(
zx, y

)〉
< 0. (3.48)

(iv) αn ∈ [γ, (1 − k)/2] for some γ > 0, limn→∞λn = 0 and
∑∞

n=0 λn = ∞.

Then the sequences {xn}, {yn} and {zn} generated by (3.1) converge strongly to x∗ which solves the
problem (2.8) provided Sr is firmly nonexpansive.
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[7] S. D. Flåm and A. S. Antipin, “Equilibrium programming using proximal-like algorithms,”
Mathematical Programming, vol. 78, no. 1, pp. 29–41, 1997.

[8] S. Takahashi and W. Takahashi, “Viscosity approximation methods for equilibrium problems and
fixed point problems in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 331, no.
1, pp. 506–515, 2007.

[9] O. Chadli, I. V. Konnov, and J.-C. Yao, “Descent methods for equilibrium problems in a banach space,”
Computers and Mathematics with Applications, vol. 48, no. 3-4, pp. 609–616, 2004.

[10] X.-P. Ding, Y.-C. Lin, and J.-C. Yao, “Predictor-corrector algorithms for solving generalized mixed
implicit quasi-equilibrium problems,”AppliedMathematics andMechanics, vol. 27, no. 9, pp. 1157–1164,
2006.

[11] Y. Yao, Y.-C. Liou, and J.-C. Yao, “Convergence theorem for equilibrium problems and fixed point
problems of infinite family of nonexpansive mappings,” Fixed Point Theory and Applications, vol. 2007,
Article ID 64363, 12 pages, 2007.

[12] S. Plubtieng and R. Punpaeng, “A general iterative method for equilibrium problems and fixed point
problems in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 336, no. 1, pp. 455–
469, 2007.

[13] A. Tada and W. Takahashi, “Strong convergence theorem for an equilibrium problem and a
nonexpansive mapping,” inNonlinear Analysis and Convex Analysis, W. Takahashi and T. Tanaka, Eds.,
pp. 609–617, Yokohama, Yokohama, Japan, 2007.

[14] M. A. Noor, “Fundamentals of equilibrium problems,”Mathematical Inequalities & Applications, vol. 9,
no. 3, pp. 529–566, 2006.

[15] Y. Yao, M.A. Noor, and Y-C. Liou, “On iterative methods for equilibrium problems,” Nonlinear
Analysis, vol. 70, pp. 497–509, 2009.

[16] L.-C. Zeng and J.-C. Yao, “A hybrid iterative scheme for mixed equilibrium problems and fixed point
problems,” Journal of Computational and Applied Mathematics, vol. 214, no. 1, pp. 186–201, 2008.

[17] Y. Yao, M. A. Noor, S. Zainab, and Y.-C. Liou, “Mixed equilibrium problems and optimization
problems,” Journal of Mathematical Analysis and Applications, vol. 354, no. 1, pp. 319–329, 2009.

[18] Y. Yao, H. Zhou, and Y.-C. Liou, “Weak and strong convergence theorems for an asymptotically k-
strict pseudocontraction and a mixed equilibrium problem,” Journal of the Korean Mathematical Society,
vol. 46, pp. 561–576, 2009.

[19] P.-E. Mainge, “Regularized and inertial algorithms for common fixed points of nonlinear operators,”
Journal of Mathematical Analysis and Applications, vol. 344, no. 2, pp. 876–887, 2008.

[20] Y. Yao, Y.-C. Liou, and J.-C. Yao, “An iterative algorithm for approximating convex minimization
problem,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 648–656, 2007.

[21] G. Marino, V. Colao, L. Muglia, and Y. Yao, “Krasnoselski-Mann iteration for hierarchical fixed points
and equilibrium problem,” Bulletin of the Australian Mathematical Society, vol. 79, pp. 187–200, 2009.

[22] P.-E. Mainge and A. Moudafi, “Coupling viscosity methods with the extragradient algorithm for
solving equilibrium problems,” Journal of Nonlinear and Convex Analysis, vol. 9, no. 2, pp. 283–294,
2008.

[23] A. Moudafi, “Weak convergence theorems for nonexpansive mappings and equilibrium problems,”
Journal of Nonlinear and Convex Analysis, vol. 9, no. 1, pp. 37–43, 2008.

[24] L.-C. Ceng, S. Al-Homidan, Q. H. Ansari, and J.-C. Yao, “An iterative scheme for equilibrium
problems and fixed point problems of strict pseudo-contraction mappings,” Journal of Computational
and Applied Mathematics, vol. 223, no. 2, pp. 967–974, 2009.

[25] G. Marino and H.-K. Xu, “Weak and strong convergence theorems for strict pseudo-contractions in
Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 329, no. 1, pp. 336–346, 2007.

[26] L.-C. Zeng, N.-C. Wong, and J.-C. Yao, “Strong convergence theorems for strictly pseudocontractive
mappings of Browder-Petryshyn type,” Taiwanese Journal of Mathematics, vol. 10, no. 4, pp. 837–849,
2006.

[27] H. Zhou, “Convergence theorems of common fixed points for a finite family of Lipschitz
pseudocontractions in Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 68, no.
10, pp. 2977–2983, 2008.

[28] I. V. Konnov, “Generalizedmonotone equilibrium problems and variational inequalities,” inHandbook
of Generalized Convexity and GeneralizedMonotonicity, N. Hadjisavvas, S. Komlosi, and S. Schaible, Eds.,
Springer, New York, NY, USA, 2005.


